Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio...Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.展开更多
A sloping semisolid rheo-rolling process of Mg-3Sn-1Mn alloy was developed, and the effects of process parameters on the microstructure and mechanical properties of Mg-3Sn-lMn alloy strip were studied. The results sho...A sloping semisolid rheo-rolling process of Mg-3Sn-1Mn alloy was developed, and the effects of process parameters on the microstructure and mechanical properties of Mg-3Sn-lMn alloy strip were studied. The results show that the primary grain average diameter of the strip increases with the increase of the roll speed. The primary grain average diameter decreases firstly and then increases with the increase of the vibration frequency, and the tensile strength and elongation of the strip increase firstly and then decrease with the increase of the vibration frequency. The primary grain average diameter increases with the increase of casting temperature, and the tensile strength and elongation of the strip decrease correspondingly. When the casting temperature is 670℃, the roll speed is 52 mm/s, and the vibration frequency is 60 Hz, Mg-3Sn-1Mn alloy strip with good properties is produced. The mechanical properties of the present product are higher than those of Mg-3Sn-lMn alloy casting with the addition of 0.87% Ce (mass fraction).展开更多
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff...Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.展开更多
The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure,...The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure, hardness are analyzed, and the stability of gradient distribution of composition, macrostructure and hardness along the axial direction of the ingot is also studied. The results show that diffe rent composition profiles can be achieved by adjusting the processing parameters; the volume fraction of inner alloy in the ingot can be increased by enlarging the throttle bore diameter and elevating the temperature of inner melt; quasi steady solidification can be realized within 20 s during cast processing, and consistent quality ingot is obtained by controlling the casting speed and liquid height of inner melt.展开更多
Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou...Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.展开更多
In this paper, a novel near-net-shape forming process, continuous semisolid extrusion process (CSEP) of AZ31 alloy was proposed, and the dynamical solidification behaviors and metal flow during the process were firs...In this paper, a novel near-net-shape forming process, continuous semisolid extrusion process (CSEP) of AZ31 alloy was proposed, and the dynamical solidification behaviors and metal flow during the process were firstly investigated. During casting AZ31 alloy by this process, non-uniform microstructure distributions and non- equilibrium solidification region near the roll surface were found in the roll-shoe gap. Microstructural evolution from dendrite to rosette and spherical grains was observed during the casting by CSEP. Casting temperature, roll-shoe gap width and cooling ability have great effect on casting process and metal flow, so these factors should be carefully controlled, a proper casting temperature of 710-750℃ is suggested. The white α phases were strongly stretched during the processing, and the remnant liquids are correspondingly distributes along the solid phase boundaries and also show stripped lines.展开更多
The major unsteady phenomena in semisolid continuous casting process are the breakage and breakout. The essential reasons for them are the passageway blocking or the solidified shell too thin to endure the withdrawal ...The major unsteady phenomena in semisolid continuous casting process are the breakage and breakout. The essential reasons for them are the passageway blocking or the solidified shell too thin to endure the withdrawal force because of the remained shell formed at the beginning and its developing afterwards. Through theoretically analyzing the crack filling and the remained shell developing, stability conditions were presented. The essential one of them is that the stress acted on the semisolid slurry must be larger than the yield stress of it. The condition without breakage is to build a balance between the increase of the remained shell resulted in solidifying and the decrease of it resulted in flowing of the semisolid slurry. The condition without breakout is to ensure the solidified thickness larger than the safe thickness. The corresponding mathematical formulas of these conditions were set up and the verification experiments show that these conditions are reliable in applications. [展开更多
BACKGROUND There are relatively few studies on continuing care of coronary heart disease(CHD),and its research value needs to be further clarified.AIM To investigate the effect of continuous nursing on treatment compl...BACKGROUND There are relatively few studies on continuing care of coronary heart disease(CHD),and its research value needs to be further clarified.AIM To investigate the effect of continuous nursing on treatment compliance and side effect management in patients with CHD.METHODS This is a retrospective study with patients from January 2021 to 2023.The study was divided into two groups with 30 participants in each group.Self-rating anxiety scale(SAS)and Self-rating depression scale(SDS)were used to assess patients'anxiety and depression,and medical coping questionnaire was used to assess patients'coping styles.The pelvic floor dysfunction questionnaire(PFDI-20)was used to assess the status of pelvic floor function,including bladder symptoms,intestinal symptoms,and pelvic symptoms.RESULTS SAS score decreased from 57.33±3.01before treatment to 41.33±3.42 after treatment,SDS score decreased from 50.40±1.45 to 39.47±1.57.The decrease of these two indexes was statistically significant(P<0.05).PFDI-20 scores decreased from the mean 16.83±1.72 before treatment to 10.47±1.3the mean after treatment,which was statistically significant(P<0.05).CONCLUSION The results of this study indicate that pioneering research in continuous care of CHD has a positive impact on improving patients'treatment compliance,reducing anxiety and depression levels,and improving coping styles and pelvic floor functional status.展开更多
Upper gastrointestinal bleeding (UGIB) presents as a prevalent clinical challenge, with annual incidence rates ranging from 80 to 150 cases per 100,000 individuals. Guidelines for managing patients with UGIB due to bl...Upper gastrointestinal bleeding (UGIB) presents as a prevalent clinical challenge, with annual incidence rates ranging from 80 to 150 cases per 100,000 individuals. Guidelines for managing patients with UGIB due to bleeding ulcers recommend a continuous infusion of proton pump inhibitors (PPI). However, studies comparing intermittent dosing of PPI therapy show that this regimen achieves similar clinical benefits. If the clinical efficacy remains equivalent, intermittent dosing will be more cost-effective for patients and the health care system. Our research study aims to analyze the comparative effectiveness of intermittent versus continuous PPI therapy after endoscopic treatment in patients with UGIB, focusing on such endpoints as rebleeding risk at 3-and 7-day mortality rates. Methods: Resources searched included MEDLINE, EMBASE, PUBMED, and the Cochrane Central Register of Controlled Trials databases from January 2010 through December 2023 with the inclusion of meta-analysis, systematic review, review, or ACG guideline recommendations. Results of the analysis show how recommendations regarding high vs. low PPI regimen changed over time: from no difference in regimen in 2010 to recommending continuous regimen in 2012 to declaring insufficient evidence between choosing one regimen over another in 2013 to determine that both regimens were comparable to each other in 2014-2018 and finally to recommending both regimens in 2021. To conclude, our review shows that in patients with bleeding ulcers and high-risk endoscopic findings, intermittent PPI therapy is non-inferior to continuous PPI infusion for three days, seven days bleeding risk or mortality rates;however, it remains challenging to determine the most optimal intermittent regimen due to heterogeneity of RCTs included in meta-analyses, and further trials will need to be performed.展开更多
Semisolid continuous casting (SSCC) is a new technology to produce billets for semisolid metal forming (SSMF). The effect of process factors, such as pouring temperature, stirring rate, preheating temperature and ther...Semisolid continuous casting (SSCC) is a new technology to produce billets for semisolid metal forming (SSMF). The effect of process factors, such as pouring temperature, stirring rate, preheating temperature and thermal conductivity of stirring chamber, on the microstructure of SSCC billets was studied by means of the factorial experimental method. The results show that the microstructure of SSCC billets can be controlled by the above-mentioned four process factors. In order to obtain fine and rounded granular grains in an SSCC billet, the pouring temperature, preheating temperature and stirring rate should be kept in a moderate range, and the thermal conductivity of stirring chamber should be high. The regression equations with the process factors connecting the microstructure was also set up based on experimental data.展开更多
A novel technology of continuous semisolid extrusion Process(CSEP) was adopted to produce AZ31 alloy structural materials.Effects of technological conditions on the microstructures of AZ31 alloy during CSEP were studi...A novel technology of continuous semisolid extrusion Process(CSEP) was adopted to produce AZ31 alloy structural materials.Effects of technological conditions on the microstructures of AZ31 alloy during CSEP were studied.During the casting process,the non-uniform distribution of microstructures was found in the roll-shoe gap.Microstructure evolution from dendrite to rosette or spherical grains was observed during the casting process by CSEP.The results show that high casting temperature and large cooling intensity can cause non-equilibrium solidification region near the roll surface,large roll-shoe gap width and high cooling intensity can lead to the formation of discontinuous solidification microstructure and slip plane near the shoe surface,which will finally cause the failure of the casting process.The proper casting temperature range of 730-750 °C,the roll cooling intensity of 0.4 L/s and the roll-shoe gap width of less than 10 mm are suggested.Under the suggested conditions,the product with diameter of 10 mm of AZ31 alloy with smooth surface and homogeneous striped microstructure is obtained.The average strength of the product after heat treatment reaches 270 MPa,and the elongation is 16%.展开更多
A general mathematical model and boundary condition applicable to momentum and heat transfer in the semisolid continuous casting(SCC) process was established. Using the model, the numerical simulation of the momentum ...A general mathematical model and boundary condition applicable to momentum and heat transfer in the semisolid continuous casting(SCC) process was established. Using the model, the numerical simulation of the momentum and heat transfer of molten metal was carried out in the SCC system. The obtained results fit well with the measured ones. Moreover, using the numerical simulating software, the effect of various factors on breakout and breakage was explored. The obtained results show that heat flow density of copper mold and the withdrawal beginning time are two major influencing factors. The larger the heat flow density of copper mold, or the shorter the withdrawal beginning time, the more stable the semisolid continuous casting process. [展开更多
The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing rese...The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing research lacks a practical framework for such ongoing monitoring.To address this gap,this paper proposes the first NonCollaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework(NCCMF),based on relevant standards.NCCMF operates without the CSP’s collaboration by:1)establishing a scalable supervisory index system through the identification of security responsibilities for each role,and 2)designing a Continuous Metrics Supervision Protocol(CMA)to automate the negotiation of supervisory metrics.The framework also outlines the supervision process for cloud services across different deployment models.Experimental results demonstrate that NCCMF effectively monitors the operational state of two real-world IoT(Internet of Things)cloud services,with an average supervision error of less than 15%.展开更多
Continuous and semi-continuous mining technology has become the main trend of modern surface mines in the world. According to the deposit characteristics of coal basin in China and Chinese situation,this paper discuss...Continuous and semi-continuous mining technology has become the main trend of modern surface mines in the world. According to the deposit characteristics of coal basin in China and Chinese situation,this paper discussed the new semi-continuous technology── shovel - transfer wagon-belt conveyor and its application prospect in large surface coal mines in China.展开更多
Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous...Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous capture by integrating the UV signal of breakthrough.In this study,the process risk of CaptureSMB continuous capture under AutoMAb control towards the feedstock variations was assessed by a mechanistic model developed by us.The effects of target protein and impurities under the variation range of±10 mAU·min^(-1) on load amount,protein loss,process productivity,and resin capacity utilization were investigated.The results showed that the CaptureSMB process could be successfully controlled by AutoMAb towards increased or slightly decreased concentration of feedstock.However,the load process would be out of control with drastically decreased target protein or impurities,and the decreased impurities would lead to protein loss.It was found that AutoMAb control would cause 44.7%non-operational areas and 18.3%protein loss areas in the variation range of±10 mAU·min^(-1).To improve the stability of the CaptureSMB process,a modified AutoMAb control that would stop the load procedure when the absolute value of the integral area reached the preset value,was proposed to reduce the risk of protein loss and the non-operational area.展开更多
This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.3...This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.36 MPa,an elongation of 10%,by the combination of pre-deformation(7%deformation)and two-stage aging treatment(120℃/9 h+175℃/24 h).The evolution of the microstructure and properties of the alloy was explored under the coupling conditions of different pre-deformation degrees and multi-stage aging.The results show that,pre-deformation introduced a large number of(1012)tensile twinning and dislocations,which greatly promoted the probability of continuous precipitates(CPs)appearing.On the contrary,the discontinuous precipitates(DPs)were limited by the vertical and horizontal twin structure.As a result,the pre-nucleation method of two-stage aging increased the proportion of CPs by 34%-38%.Owing to the DPs was effectively suppressed,the alloy's yield strength has been greatly improved.Besides,under multi-stage aging,the twin boundaries induce protruding nucleation to form static recrystallization by hindering the migration of dislocations,and the matrix swallows the twins,then the texture gradually tilts from the two poles to the basal plane.As an important supplement,the grain refinement and oblique texture promoted the improvement of the yield strength of the component.展开更多
Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that ...Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.展开更多
In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propos...In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.展开更多
BACKGROUND Joint replacement is a common treatment for older patients with high incidences of hip joint diseases.However,postoperative recovery is slow and complications are common,which reduces surgical effectiveness...BACKGROUND Joint replacement is a common treatment for older patients with high incidences of hip joint diseases.However,postoperative recovery is slow and complications are common,which reduces surgical effectiveness.Therefore,patients require long-term,high-quality,and effective nursing interventions to promote rehabilitation.Continuity of care has been used successfully in other diseases;however,little research has been conducted on older patients who have undergone hip replacement.AIM To explore the clinical effect of continuous nursing on rehabilitation after discharge of older individuals who have undergone joint replacement.METHODS A retrospective analysis was performed on the clinical data of 113 elderly patients.Patients receiving routine nursing were included in the convention group(n=60),and those receiving continuous nursing,according to various methods,were included in the continuation group(n=53).Harris score,short form 36(SF-36)score,complication rate,and readmission rate were compared between the convention and continuation groups.RESULTS After discharge,Harris and SF-36 scores of the continuation group were higher than those of the convention group.The Harris and SF-36 scores of the two groups showed an increasing trend with time,and there was an interaction effect between group and time(Harris score:F_(intergroup effect)=376.500,F_(time effect)=20.090,Finteraction effect=4.824;SF-36 score:F_(intergroup effect)=236.200,Ftime effect=16.710,Finteraction effect=5.584;all P<0.05).Furthermore,the total complication and readmission rates in the continuation group were lower(P<0.05).CONCLUSION Continuous nursing could significantly improve hip function and quality of life in older patients after joint replacement and reduce the incidence of complications and readmission rates.展开更多
Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the ...Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.展开更多
基金The authors would like to acknowledge financial support from the National Key R&D Program of China(Nos.2021YFF1200700 and 2021YFA0911100)the National Natural Science Foundation of China(Nos.T2225010,32171399,and 32171456)+4 种基金the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(No.22dfx02)Pazhou Lab,Guangzhou(No.PZL2021KF0003)The authors also would like to thank the funding support from the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,and State Key Laboratory of Precision Measuring Technology and Instruments(No.pilab2211)QQOY would like to thank the China Postdoctoral Science Foundation(No.2022M713645)JL would like to thank the National Natural Science Foundation of China(No.62105380)and the China Postdoctoral Science Foundation(No.2021M693686).
文摘Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.
基金Project(51222405) supported by the National Science Foundation of Outstanding Young Scholars of ChinaProject(51034002) supported by the National Natural Science Foundation of China+1 种基金Project(132002) supported by the Fok Ying Tong Education FoundationProject (2011CB610405) supported by the National Basic Research Program of China
文摘A sloping semisolid rheo-rolling process of Mg-3Sn-1Mn alloy was developed, and the effects of process parameters on the microstructure and mechanical properties of Mg-3Sn-lMn alloy strip were studied. The results show that the primary grain average diameter of the strip increases with the increase of the roll speed. The primary grain average diameter decreases firstly and then increases with the increase of the vibration frequency, and the tensile strength and elongation of the strip increase firstly and then decrease with the increase of the vibration frequency. The primary grain average diameter increases with the increase of casting temperature, and the tensile strength and elongation of the strip decrease correspondingly. When the casting temperature is 670℃, the roll speed is 52 mm/s, and the vibration frequency is 60 Hz, Mg-3Sn-1Mn alloy strip with good properties is produced. The mechanical properties of the present product are higher than those of Mg-3Sn-lMn alloy casting with the addition of 0.87% Ce (mass fraction).
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52130303,52327802,52303101,52173078,51973158)the China Postdoctoral Science Foundation(2023M732579)+2 种基金Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)National Key R&D Program of China(No.2022YFB3805702)Joint Funds of Ministry of Education(8091B032218).
文摘Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.
文摘The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure, hardness are analyzed, and the stability of gradient distribution of composition, macrostructure and hardness along the axial direction of the ingot is also studied. The results show that diffe rent composition profiles can be achieved by adjusting the processing parameters; the volume fraction of inner alloy in the ingot can be increased by enlarging the throttle bore diameter and elevating the temperature of inner melt; quasi steady solidification can be realized within 20 s during cast processing, and consistent quality ingot is obtained by controlling the casting speed and liquid height of inner melt.
基金Supported by Natural Science Foundation of Zhejiang Province,No.LY23H050005and Zhejiang Medical Technology Project,No.2022RC009.
文摘Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.
基金supports from National High-Tech R&D Program of China (GrantNo. 2007AA03Z111)Natural Science Foundation of China (Grant No. 50604007)the Program for New Century Excellent Talents in University (Grant No.NCET-06-0285 and NCET-08-0097)
文摘In this paper, a novel near-net-shape forming process, continuous semisolid extrusion process (CSEP) of AZ31 alloy was proposed, and the dynamical solidification behaviors and metal flow during the process were firstly investigated. During casting AZ31 alloy by this process, non-uniform microstructure distributions and non- equilibrium solidification region near the roll surface were found in the roll-shoe gap. Microstructural evolution from dendrite to rosette and spherical grains was observed during the casting by CSEP. Casting temperature, roll-shoe gap width and cooling ability have great effect on casting process and metal flow, so these factors should be carefully controlled, a proper casting temperature of 710-750℃ is suggested. The white α phases were strongly stretched during the processing, and the remnant liquids are correspondingly distributes along the solid phase boundaries and also show stripped lines.
基金Project (5 992 81)supportedbytheNaturalScienceFoundationofHebeiProvince P .R .China
文摘The major unsteady phenomena in semisolid continuous casting process are the breakage and breakout. The essential reasons for them are the passageway blocking or the solidified shell too thin to endure the withdrawal force because of the remained shell formed at the beginning and its developing afterwards. Through theoretically analyzing the crack filling and the remained shell developing, stability conditions were presented. The essential one of them is that the stress acted on the semisolid slurry must be larger than the yield stress of it. The condition without breakage is to build a balance between the increase of the remained shell resulted in solidifying and the decrease of it resulted in flowing of the semisolid slurry. The condition without breakout is to ensure the solidified thickness larger than the safe thickness. The corresponding mathematical formulas of these conditions were set up and the verification experiments show that these conditions are reliable in applications. [
文摘BACKGROUND There are relatively few studies on continuing care of coronary heart disease(CHD),and its research value needs to be further clarified.AIM To investigate the effect of continuous nursing on treatment compliance and side effect management in patients with CHD.METHODS This is a retrospective study with patients from January 2021 to 2023.The study was divided into two groups with 30 participants in each group.Self-rating anxiety scale(SAS)and Self-rating depression scale(SDS)were used to assess patients'anxiety and depression,and medical coping questionnaire was used to assess patients'coping styles.The pelvic floor dysfunction questionnaire(PFDI-20)was used to assess the status of pelvic floor function,including bladder symptoms,intestinal symptoms,and pelvic symptoms.RESULTS SAS score decreased from 57.33±3.01before treatment to 41.33±3.42 after treatment,SDS score decreased from 50.40±1.45 to 39.47±1.57.The decrease of these two indexes was statistically significant(P<0.05).PFDI-20 scores decreased from the mean 16.83±1.72 before treatment to 10.47±1.3the mean after treatment,which was statistically significant(P<0.05).CONCLUSION The results of this study indicate that pioneering research in continuous care of CHD has a positive impact on improving patients'treatment compliance,reducing anxiety and depression levels,and improving coping styles and pelvic floor functional status.
文摘Upper gastrointestinal bleeding (UGIB) presents as a prevalent clinical challenge, with annual incidence rates ranging from 80 to 150 cases per 100,000 individuals. Guidelines for managing patients with UGIB due to bleeding ulcers recommend a continuous infusion of proton pump inhibitors (PPI). However, studies comparing intermittent dosing of PPI therapy show that this regimen achieves similar clinical benefits. If the clinical efficacy remains equivalent, intermittent dosing will be more cost-effective for patients and the health care system. Our research study aims to analyze the comparative effectiveness of intermittent versus continuous PPI therapy after endoscopic treatment in patients with UGIB, focusing on such endpoints as rebleeding risk at 3-and 7-day mortality rates. Methods: Resources searched included MEDLINE, EMBASE, PUBMED, and the Cochrane Central Register of Controlled Trials databases from January 2010 through December 2023 with the inclusion of meta-analysis, systematic review, review, or ACG guideline recommendations. Results of the analysis show how recommendations regarding high vs. low PPI regimen changed over time: from no difference in regimen in 2010 to recommending continuous regimen in 2012 to declaring insufficient evidence between choosing one regimen over another in 2013 to determine that both regimens were comparable to each other in 2014-2018 and finally to recommending both regimens in 2021. To conclude, our review shows that in patients with bleeding ulcers and high-risk endoscopic findings, intermittent PPI therapy is non-inferior to continuous PPI infusion for three days, seven days bleeding risk or mortality rates;however, it remains challenging to determine the most optimal intermittent regimen due to heterogeneity of RCTs included in meta-analyses, and further trials will need to be performed.
基金This work was financed by the NatUral Science Research Fotmdation of Hebei Province, China and the NatUral Science Researc
文摘Semisolid continuous casting (SSCC) is a new technology to produce billets for semisolid metal forming (SSMF). The effect of process factors, such as pouring temperature, stirring rate, preheating temperature and thermal conductivity of stirring chamber, on the microstructure of SSCC billets was studied by means of the factorial experimental method. The results show that the microstructure of SSCC billets can be controlled by the above-mentioned four process factors. In order to obtain fine and rounded granular grains in an SSCC billet, the pouring temperature, preheating temperature and stirring rate should be kept in a moderate range, and the thermal conductivity of stirring chamber should be high. The regression equations with the process factors connecting the microstructure was also set up based on experimental data.
基金Projects(50974038,51034002) supported by the National Natural Science Foundation of ChinaProject (2007AA03Z111) supported by Natural High-tech Research and Development Program of ChinaProjects(N090502003) supported by the Basic Scientific Research Operation of Center University,China
文摘A novel technology of continuous semisolid extrusion Process(CSEP) was adopted to produce AZ31 alloy structural materials.Effects of technological conditions on the microstructures of AZ31 alloy during CSEP were studied.During the casting process,the non-uniform distribution of microstructures was found in the roll-shoe gap.Microstructure evolution from dendrite to rosette or spherical grains was observed during the casting process by CSEP.The results show that high casting temperature and large cooling intensity can cause non-equilibrium solidification region near the roll surface,large roll-shoe gap width and high cooling intensity can lead to the formation of discontinuous solidification microstructure and slip plane near the shoe surface,which will finally cause the failure of the casting process.The proper casting temperature range of 730-750 °C,the roll cooling intensity of 0.4 L/s and the roll-shoe gap width of less than 10 mm are suggested.Under the suggested conditions,the product with diameter of 10 mm of AZ31 alloy with smooth surface and homogeneous striped microstructure is obtained.The average strength of the product after heat treatment reaches 270 MPa,and the elongation is 16%.
文摘A general mathematical model and boundary condition applicable to momentum and heat transfer in the semisolid continuous casting(SCC) process was established. Using the model, the numerical simulation of the momentum and heat transfer of molten metal was carried out in the SCC system. The obtained results fit well with the measured ones. Moreover, using the numerical simulating software, the effect of various factors on breakout and breakage was explored. The obtained results show that heat flow density of copper mold and the withdrawal beginning time are two major influencing factors. The larger the heat flow density of copper mold, or the shorter the withdrawal beginning time, the more stable the semisolid continuous casting process. [
基金supported in part by the Intelligent Policing and National Security Risk Management Laboratory 2023 Opening Project(No.ZHKFYB2304)the Fundamental Research Funds for the Central Universities(Nos.SCU2023D008,2023SCU12129)+2 种基金the Natural Science Foundation of Sichuan Province(No.2024NSFSC1449)the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129)the Key Laboratory of Data Protection and Intelligent Management(Sichuan University),Ministry of Education.
文摘The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing research lacks a practical framework for such ongoing monitoring.To address this gap,this paper proposes the first NonCollaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework(NCCMF),based on relevant standards.NCCMF operates without the CSP’s collaboration by:1)establishing a scalable supervisory index system through the identification of security responsibilities for each role,and 2)designing a Continuous Metrics Supervision Protocol(CMA)to automate the negotiation of supervisory metrics.The framework also outlines the supervision process for cloud services across different deployment models.Experimental results demonstrate that NCCMF effectively monitors the operational state of two real-world IoT(Internet of Things)cloud services,with an average supervision error of less than 15%.
文摘Continuous and semi-continuous mining technology has become the main trend of modern surface mines in the world. According to the deposit characteristics of coal basin in China and Chinese situation,this paper discussed the new semi-continuous technology── shovel - transfer wagon-belt conveyor and its application prospect in large surface coal mines in China.
基金supported by the Zhejiang Key Science and Technology Project(2023C03116)National Natural Science Foundation of China(22078286)National Key Research and Development Program of China(2021YFE0113300).
文摘Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous capture by integrating the UV signal of breakthrough.In this study,the process risk of CaptureSMB continuous capture under AutoMAb control towards the feedstock variations was assessed by a mechanistic model developed by us.The effects of target protein and impurities under the variation range of±10 mAU·min^(-1) on load amount,protein loss,process productivity,and resin capacity utilization were investigated.The results showed that the CaptureSMB process could be successfully controlled by AutoMAb towards increased or slightly decreased concentration of feedstock.However,the load process would be out of control with drastically decreased target protein or impurities,and the decreased impurities would lead to protein loss.It was found that AutoMAb control would cause 44.7%non-operational areas and 18.3%protein loss areas in the variation range of±10 mAU·min^(-1).To improve the stability of the CaptureSMB process,a modified AutoMAb control that would stop the load procedure when the absolute value of the integral area reached the preset value,was proposed to reduce the risk of protein loss and the non-operational area.
基金the financial supports from Program for the Supported by the Innovative Talents Support Program of Higher Education Institutions in Shanxi Provincethe‘Shanxi Province’s Key Core Technology and Common Technology Research And Development Special Project’(2020XXX015)Special Project for Scientific and Technological Cooperation and Exchange in Shanxi Province(regional cooperation project):Key Technologies for flexible manufacturing of high-strength heat-resistant magnesium alloy cabin components(202104041101033)。
文摘This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.36 MPa,an elongation of 10%,by the combination of pre-deformation(7%deformation)and two-stage aging treatment(120℃/9 h+175℃/24 h).The evolution of the microstructure and properties of the alloy was explored under the coupling conditions of different pre-deformation degrees and multi-stage aging.The results show that,pre-deformation introduced a large number of(1012)tensile twinning and dislocations,which greatly promoted the probability of continuous precipitates(CPs)appearing.On the contrary,the discontinuous precipitates(DPs)were limited by the vertical and horizontal twin structure.As a result,the pre-nucleation method of two-stage aging increased the proportion of CPs by 34%-38%.Owing to the DPs was effectively suppressed,the alloy's yield strength has been greatly improved.Besides,under multi-stage aging,the twin boundaries induce protruding nucleation to form static recrystallization by hindering the migration of dislocations,and the matrix swallows the twins,then the texture gradually tilts from the two poles to the basal plane.As an important supplement,the grain refinement and oblique texture promoted the improvement of the yield strength of the component.
基金Project supported by the NSAF(Grant No.U1930201)the National Natural Science Foundation of China(Grant Nos.12274331,91836101,and 91836302)+1 种基金the National Key R&D Program of China(Grant No.2018YFA0306504)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302100).
文摘Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61971348 and 61201194)。
文摘In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.
基金Hebei Provincial Medical Science Research Key Project Plan,No.20181057.
文摘BACKGROUND Joint replacement is a common treatment for older patients with high incidences of hip joint diseases.However,postoperative recovery is slow and complications are common,which reduces surgical effectiveness.Therefore,patients require long-term,high-quality,and effective nursing interventions to promote rehabilitation.Continuity of care has been used successfully in other diseases;however,little research has been conducted on older patients who have undergone hip replacement.AIM To explore the clinical effect of continuous nursing on rehabilitation after discharge of older individuals who have undergone joint replacement.METHODS A retrospective analysis was performed on the clinical data of 113 elderly patients.Patients receiving routine nursing were included in the convention group(n=60),and those receiving continuous nursing,according to various methods,were included in the continuation group(n=53).Harris score,short form 36(SF-36)score,complication rate,and readmission rate were compared between the convention and continuation groups.RESULTS After discharge,Harris and SF-36 scores of the continuation group were higher than those of the convention group.The Harris and SF-36 scores of the two groups showed an increasing trend with time,and there was an interaction effect between group and time(Harris score:F_(intergroup effect)=376.500,F_(time effect)=20.090,Finteraction effect=4.824;SF-36 score:F_(intergroup effect)=236.200,Ftime effect=16.710,Finteraction effect=5.584;all P<0.05).Furthermore,the total complication and readmission rates in the continuation group were lower(P<0.05).CONCLUSION Continuous nursing could significantly improve hip function and quality of life in older patients after joint replacement and reduce the incidence of complications and readmission rates.
基金supported by the National Natural Science Foundation of China(No.52274319)。
文摘Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.