High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium...High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium alloys produced through the conventional semi-continuous casting process inevitably contain casting defects,which makes it challenging to manufacture high-quality ingots.The integration of external field assisted controlled solidification technology,which combines physical fields such as electromagnetic and ultrasonic fields with traditional semi-continuous casting processes,enables the production of high-quality magnesium alloy ingots characterized by a homogeneous microstructure and absence of cracks.This article mainly summarizes the technical principles of those external field assisted casting process.The focus is on elaborating the refinement mechanism of different types of electromagnetic fields,ultrasonic fields,and combined physical fields during the solidification of magnesium alloys.Finally,the development prospects of producing highquality magnesium alloy ingots through semi-continuous casting under the external field were discussed.展开更多
Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructur...Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructure and composition distribution of the composite interface were investigated.The results show that semi-solid layer with a certain thickness forms near the interface due to the effect of cooling plate,which ensures successful implementation of casting the composite ingot.Two different aluminum alloys are well bonded metallurgically.The mechanical properties of composite interface were measured,the tensile and shearing strengths of composite interface are 105 and 88 MPa,respectively,which proves that the composite interface is a kind of metallurgical bonding.展开更多
Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.Th...Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.This work investigated the casting process on the microstructures and flow stress behaviors of the semi-continuous casting billets for the fabrication of large-scale Mg-9Gd-3Y-1.5Zn-0.8Zr billets.The casting process(electromagnetic intensity and casting speed)shows outstanding effects on the microstructures and flow stress behavior of the billets.The billets with the specific casting process(I=68 A,V=65 mm/min)exhibit uniform microstructures and good deformation uniformity.展开更多
Under the high-intensity ultrasonic field,AZ80 magnesium alloy was semi-continuously cast.The effects of ultrasonic intensity on the as-cast microstructures and mechanical properties were investigated.The results show...Under the high-intensity ultrasonic field,AZ80 magnesium alloy was semi-continuously cast.The effects of ultrasonic intensity on the as-cast microstructures and mechanical properties were investigated.The results show that the microstructures of the alloy cast under high-intensity ultrasonic field are fine and uniform,and the grains are equiaxed,rose-shaped or globular with an average size of 257μm.High-intensity field significantly decreases the grain size,changes the morphologies of theβ-Mg17Al12 phases and reduces their area fraction.It is also shown that a proper increase in ultrasonic intensity is helpful to obtain fine,uniform and equiaxed as-cast microstructures.The optimum ultrasonic parameters are that frequency is 20 kHz and ultrasonic intensity is 1 368 W.The mechanical tests show that the mechanical properties of the as-cast AZ80 magnesium alloy billets cast under ultrasonic field are greatly improved,and with increasing the ultrasonic intensity,the mechanical properties of the entire alloy billets are much higher and more uniform than those of the alloy without ultrasonic field.展开更多
The microstucture, mechanical properties and fracture behaviors of semi-continuous cast Mg-8Gd- 3Y-0.5Zr (wt.%, GW83K) alloy after different heat treatments were investigated. Almost all the eutectic compounds were ...The microstucture, mechanical properties and fracture behaviors of semi-continuous cast Mg-8Gd- 3Y-0.5Zr (wt.%, GW83K) alloy after different heat treatments were investigated. Almost all the eutectic compounds were dissolved into the matrix and there was no evident grain growth after optimum solution treatment at 500 ~C for 4 h. Further ageing at low temperatures led to significant precipitation hardening, which strengthened the alloy. Peak-aged at 200℃, the alloy had the highest ultimate tensile strength (UTS) and lowest elongation at 395 MPa and 2.8%, respectively. When aged at 225℃ for 15 h, the alloy exhibited prominent mechanical performance with UTS and elongation of 363 MPa and 5.8 %, respectively. With regard to microstructure and tensile properties, the processes of 500℃, 4 h + 225℃, 15 h are selected as the optimal heat treatment conditions. The alloy under different conditions shows different fracture behaviors: in the as-cast alloy, a quasi-cleavage pattern is observed; after solution treatment, the alloy exhibits a trans-granular quasi-cleavage fracture; after being peak-aged at 200℃ and 225℃, the fracture mode is a mixed mode of trans-granular and inter-granular fracture, in which the inter-granular mode is dominant in the alloy peak-aged at 200℃.展开更多
The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that...The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that the chemical composition distributed homogeneously through the whole alloy ingot and the average grain size increased from the surface to the center. The results of the EDS and element face-scanning illustrated that the eutectic compounds mainly consisted of fl-Mg17Al12 and a small amount of fl-Mgl7(AlZn)12. Furthermore, slight improvements of the strength and ductility were observed from the center to the surface along the axial direction of the alloy ingot, while both the strength and elongation to failure of the samples along the radial direction are higher than that along the axial direction. The fine grain strengthening was the main contributors to the strength of the as-casted AZ31 alloy.展开更多
The semi-continuous casting of ZK60 magnesium alloy under different middle frequency electromagnetic field conditions was examined.Effects of middle frequency electromagnetic field on microstructure,precipitations and...The semi-continuous casting of ZK60 magnesium alloy under different middle frequency electromagnetic field conditions was examined.Effects of middle frequency electromagnetic field on microstructure,precipitations and tensile properties are investigated.The results show that the microstructures of ZK60 magnesium alloy are refined and distribution uniformity of precipitations is observed after applying the middle frequency electromagnetic field.And the tensile properties of the billets produced by middle frequency electromagnetic field are increased.展开更多
In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investig...In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming.展开更多
The low frequency electromagnetic field was applied during direct chill(DC) semi-continuous casting of the ZK60 magnesium alloy billets. Effects of low frequency electromagnetic field on surface quality, microstructur...The low frequency electromagnetic field was applied during direct chill(DC) semi-continuous casting of the ZK60 magnesium alloy billets. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of Φ500 mm ZK60 magnesium alloy billets were investigated. The results showed that with the application of the low frequency electromagnetic field, the surface quality of the ZK60 magnesium alloy billets is markedly improved and the depth of cold fold is decreased. The microstructure of the billets is also significantly refined. Besides, the distribution of the grain size is relatively uniform from the billet surface towards its center, where the average grain size is 42 μm at surface and 50 μm at center. It also shows that the hot-tearing tendency of DC semi-continuous casting ZK60 magnesium alloy billets is significantly reduced under low frequency electromagnetic field.展开更多
AZ31 alloy billets of 200 mm in diameter were produced by three different processes of conventional direct chill (DC) casting, low-frequency electromagnetic casting (LFEC) and low-frequency electromagnetic vibrati...AZ31 alloy billets of 200 mm in diameter were produced by three different processes of conventional direct chill (DC) casting, low-frequency electromagnetic casting (LFEC) and low-frequency electromagnetic vibration casting (LFEVC), respectively. The effect of LFEC and LFEVC on the microstructures, macmsegregation and mechanical properties of AZ31 alloy billets was investigated. In conventional DC casting, the AZ31 alloy billets exhibited coarse grains (about 370 μa) and severe segregation of A1 and Zn. In the presence of a solo low-frequency alternating magnetic field or a low-frequency electromagnetic vibration field applied during DC casting of Ф200 mm AZ31 billets, grains in the AZ31 alloy billets were effectively reffmed (about 210 μa) and the macrosegregation of A1 and Zn in the billets was greatly decreased. Furthermore, the tensile strength, fracture elongation and hardness of the as-cast AZ31 alloy billets were improved by the processes of LFEC and LFEVC relative to that cast by the process of conventional DC casting.展开更多
A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was ...A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was measured. The microstructures, elemental distribution, Vickers hardness around the bonding interface, and the interfacial shear strength were examined. The results showed that the interface temperature rebounded when AA4045 melt contacted the supporting layer. The two alloys bonded well, with few defects, via the diffusion of Si and Mn in the temperature range from 569℃ to 632℃. The mean shear strength of the bonding interface was 82.3 MPa, which was greater than that of AA3003(75.8 MPa), indicating that the two alloys bonded with each other metallurgically via elemental interdiffusion. Moreover, no relative slip occurred between the two alloys during the extrusion process.展开更多
Cooling heat flux effect in both primary and secondary cooling zone has been studied in semi-continuous casting of copper billet. Sufficient cooling is essential to reduce casting defects and to get high productivity,...Cooling heat flux effect in both primary and secondary cooling zone has been studied in semi-continuous casting of copper billet. Sufficient cooling is essential to reduce casting defects and to get high productivity, however low rate of solidification is aimed in order to get coarser grain size and softer metal for less losses in extrusion. A three-dimensional numerical model has been developed including solidification behavior of copper through mushy zone. At steady state and constant casting speed, solid shell thickness is monitored during the reduction of cooling rate at mould region to avoid breaking out. Heat flux intensity at mould plays important role not only in the formation of solid shell thickness. But, pool length and mushy zone thickness can be significantly increased by decreasing primary cooling intensity. Increase intensity of secondary cooling zone for two particular cases of primary cooling is tested. First case is tested at mould inlet water temperature of 38°C, and second case at water temperature of 63°C. Results showed that the combination of increasing secondary cooling intensity and reduction of primary cooling intensity can increase pool length and mushy zone thickness. Also, it is shown that, secondary cooling intensity can be magnified by up to 1.5 times for cooling water temperature of 63°C to get pool length close to that of water temperature of 38°C.展开更多
Large-scale Mg-8Gd-4Y-1Zn-Mn(wt.%)alloy ingot with a diameter of 315 mm and a length of 2410 mm was prepared through semi-continuous casting.Chemical composition,microstructure and mechanical properties at different l...Large-scale Mg-8Gd-4Y-1Zn-Mn(wt.%)alloy ingot with a diameter of 315 mm and a length of 2410 mm was prepared through semi-continuous casting.Chemical composition,microstructure and mechanical properties at different locations of the samples with as-cast,T4 and T6 heat-treated states,respectively,were investigated.No obvious macro segregation has been detected in the high-quality alloy ingot.The main eutectic structures at all different locations are composed ofα-Mg,Mg3RE-type,Mg5RE-type and LPSO phases.At the edge of ingot,the unusual casting twins including 10-12 extension twins and 10-11 compression twins were observed due to the intensive internal stress.In T4 heat-treated alloy,the micro segregation was eliminated.The remained phases wereα-Mg and LPSO phase.Combined with the remarkable age-hardening response,T6 samples exhibits improved mechanical properties at ambient temperature,which derives from the dense prismaticβ'precipitates and profuse basalγ'precipitates.展开更多
A new composite material consisting of lxxx aluminum alloy and 7xxx aluminum alloy was produced by semi-continuous casting. Macrostructure, microstructure, composition distribution and hardness distribution of composi...A new composite material consisting of lxxx aluminum alloy and 7xxx aluminum alloy was produced by semi-continuous casting. Macrostructure, microstructure, composition distribution and hardness distribution of composite interface were analyzed. Macrostructure shows that composite interface is planar and clean with little evidence of porosity; microstructure shows that composite interface is a kind of metallurgical bonding; composition and hardness distributions have a good corresponding relationship. At the same time, the mechanical property of composite interface was measured, the tensile strength is 71 MPa, the shearing strength is 62 MPa and the bending strength is 142.5 MPa, which can also show that composite interface is a kind of metallurgical bonding. Temperature distribution of composite interface was obtained by measuring temperatures near composite interface in lxxx aluminum alloy.展开更多
In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occur...In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occurs due to the intrusion of gases generated during the resin burning of the sand core into castings during the casting process.Therefore,a gas generation and flow constitution model was established,in which the gas generation rate is a function of temperature and time,and the flow of gas is controlled by the gas release,conservation,and Darcy's law.The heat transfer and gas flow during casting process was numerically simulated.The dangerous point of cores is firstly identified by a virtual heat transfer method based on the similarity between heat transfer and gas flow in the sand core.The gas pores in castings are predicted by the gas pressure,the viscosity and state of the melt for these dangerous points.Three distinct sand core structures were designed and used for the production of iron castings,and the simulated gas pore results were validated by the obtained castings.展开更多
In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were invest...In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.展开更多
The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results...The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results indicate that casting method plays a remarkable influence on the microstructure and mechanical properties of as-cast NZ30K alloy.The grain size increases from 35-40μm in the billets made by the DCC to about 100-120μm in the billets by the SMC.The aggregation of Mg12Nd usually found at the triple joints of grain boundaries in the billets prepared by SMC while is not observable from the billets by DCC.The tensile strengths and elongations of the billets are 195.2 MPa and 15.5% by DCC,and 162.5 MPa and 3.2% by SMC,respectively.The tensile strength of the alloy by DCC is remarkably enhanced by T6 heat treatment,which reached 308.5 MPa.Fracture surfaces of NZ30K alloy have been characterized as intergranular fracture by SMC and quasi-cleavage fracture by DCC,respectively.展开更多
The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure,...The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure, hardness are analyzed, and the stability of gradient distribution of composition, macrostructure and hardness along the axial direction of the ingot is also studied. The results show that diffe rent composition profiles can be achieved by adjusting the processing parameters; the volume fraction of inner alloy in the ingot can be increased by enlarging the throttle bore diameter and elevating the temperature of inner melt; quasi steady solidification can be realized within 20 s during cast processing, and consistent quality ingot is obtained by controlling the casting speed and liquid height of inner melt.展开更多
Mg-1.5Zn-0.2Zr-xCe (x=0, 0.1, 0.3, 0.5, mass fraction, %) alloys were prepared by conventional semi-continuous casting. The effect of rare earth Ce on the microstructure of Mg-1.5Zn-0.2Zr-xCe alloys was studied and th...Mg-1.5Zn-0.2Zr-xCe (x=0, 0.1, 0.3, 0.5, mass fraction, %) alloys were prepared by conventional semi-continuous casting. The effect of rare earth Ce on the microstructure of Mg-1.5Zn-0.2Zr-xCe alloys was studied and the distribution of Ce was analyzed by optical microscopy (OM), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that Ce element exists in the form of Mg12Ce phase and has an obvious refining effect on the microstructure of test alloys. As the Ce content increases, the grain size reduces, the grain boundaries turn thinner, and the distribution of Mg12Ce precipitates becomes more and more dispersed. The Mg-1.5Zn-0.2Zr alloy with 0.3%Ce has the best refinement effect. From center to periphery of the ingot, the amount of granular precipitates in the grain reduces. In longitudinal section of the ingot, some relative long columnar grains appear.展开更多
基金supported by the National Natural Science Foundation of China(No.52274377 and No.52304391)the Natural Science Foundation of Liaoning Province(No.2023-MSBA-133)the Fundamental Research Funds for the Central Universities(No.N2402010).
文摘High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium alloys produced through the conventional semi-continuous casting process inevitably contain casting defects,which makes it challenging to manufacture high-quality ingots.The integration of external field assisted controlled solidification technology,which combines physical fields such as electromagnetic and ultrasonic fields with traditional semi-continuous casting processes,enables the production of high-quality magnesium alloy ingots characterized by a homogeneous microstructure and absence of cracks.This article mainly summarizes the technical principles of those external field assisted casting process.The focus is on elaborating the refinement mechanism of different types of electromagnetic fields,ultrasonic fields,and combined physical fields during the solidification of magnesium alloys.Finally,the development prospects of producing highquality magnesium alloy ingots through semi-continuous casting under the external field were discussed.
基金Project (2005CB623707) supported by the National Basic Research Program of China
文摘Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructure and composition distribution of the composite interface were investigated.The results show that semi-solid layer with a certain thickness forms near the interface due to the effect of cooling plate,which ensures successful implementation of casting the composite ingot.Two different aluminum alloys are well bonded metallurgically.The mechanical properties of composite interface were measured,the tensile and shearing strengths of composite interface are 105 and 88 MPa,respectively,which proves that the composite interface is a kind of metallurgical bonding.
基金This research was financially supported by National Basic Research Program of China(Grant No.2013CB632203)the Liaoning Provincial Natural Science Foundation of China(Grant No.201202072)+1 种基金National Key Technology R&D Program of China(2012BAF09B01)the Fundamental Research Foundation of Central Universities(Grant Nos.N120509002 and N120309003).
文摘Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.This work investigated the casting process on the microstructures and flow stress behaviors of the semi-continuous casting billets for the fabrication of large-scale Mg-9Gd-3Y-1.5Zn-0.8Zr billets.The casting process(electromagnetic intensity and casting speed)shows outstanding effects on the microstructures and flow stress behavior of the billets.The billets with the specific casting process(I=68 A,V=65 mm/min)exhibit uniform microstructures and good deformation uniformity.
基金Projects(2007CB613701,2007CB613702)supported by the National Basic Research Program of ChinaProjects(50974037,50904018)supported by the National Natural Science Foundation of China+1 种基金Project(NCET-08-0098)supported by New Century Excellent Talents in University of ChinaProjects(N09040902,N090209002)supported by the Special Foundation for Basic Scientific Research of Central Colleges
文摘Under the high-intensity ultrasonic field,AZ80 magnesium alloy was semi-continuously cast.The effects of ultrasonic intensity on the as-cast microstructures and mechanical properties were investigated.The results show that the microstructures of the alloy cast under high-intensity ultrasonic field are fine and uniform,and the grains are equiaxed,rose-shaped or globular with an average size of 257μm.High-intensity field significantly decreases the grain size,changes the morphologies of theβ-Mg17Al12 phases and reduces their area fraction.It is also shown that a proper increase in ultrasonic intensity is helpful to obtain fine,uniform and equiaxed as-cast microstructures.The optimum ultrasonic parameters are that frequency is 20 kHz and ultrasonic intensity is 1 368 W.The mechanical tests show that the mechanical properties of the as-cast AZ80 magnesium alloy billets cast under ultrasonic field are greatly improved,and with increasing the ultrasonic intensity,the mechanical properties of the entire alloy billets are much higher and more uniform than those of the alloy without ultrasonic field.
基金financially supported by the National Natural Science Foundation of China(51074106)the National Key Technology R&D Program of China(2011BAE22B01-5)
文摘The microstucture, mechanical properties and fracture behaviors of semi-continuous cast Mg-8Gd- 3Y-0.5Zr (wt.%, GW83K) alloy after different heat treatments were investigated. Almost all the eutectic compounds were dissolved into the matrix and there was no evident grain growth after optimum solution treatment at 500 ~C for 4 h. Further ageing at low temperatures led to significant precipitation hardening, which strengthened the alloy. Peak-aged at 200℃, the alloy had the highest ultimate tensile strength (UTS) and lowest elongation at 395 MPa and 2.8%, respectively. When aged at 225℃ for 15 h, the alloy exhibited prominent mechanical performance with UTS and elongation of 363 MPa and 5.8 %, respectively. With regard to microstructure and tensile properties, the processes of 500℃, 4 h + 225℃, 15 h are selected as the optimal heat treatment conditions. The alloy under different conditions shows different fracture behaviors: in the as-cast alloy, a quasi-cleavage pattern is observed; after solution treatment, the alloy exhibits a trans-granular quasi-cleavage fracture; after being peak-aged at 200℃ and 225℃, the fracture mode is a mixed mode of trans-granular and inter-granular fracture, in which the inter-granular mode is dominant in the alloy peak-aged at 200℃.
基金Project(2010A090200078)supported by the Special Foundation Project of Industry,University and Research Institute Collaboration of Guangdong Provincial Government and the Ministry of Education,ChinaProject(2010B090500010)supported by the Special Commissioners’ Workstation Construction Project of Guangdong Provincial Government,China
文摘The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that the chemical composition distributed homogeneously through the whole alloy ingot and the average grain size increased from the surface to the center. The results of the EDS and element face-scanning illustrated that the eutectic compounds mainly consisted of fl-Mg17Al12 and a small amount of fl-Mgl7(AlZn)12. Furthermore, slight improvements of the strength and ductility were observed from the center to the surface along the axial direction of the alloy ingot, while both the strength and elongation to failure of the samples along the radial direction are higher than that along the axial direction. The fine grain strengthening was the main contributors to the strength of the as-casted AZ31 alloy.
基金Funded by the National Natural Science Foundation of China (NSFC)(No.50475157)the Key Fund of NSFC (No.50234022)the Key Project of Ministry of Education of China (No.105052)
文摘The semi-continuous casting of ZK60 magnesium alloy under different middle frequency electromagnetic field conditions was examined.Effects of middle frequency electromagnetic field on microstructure,precipitations and tensile properties are investigated.The results show that the microstructures of ZK60 magnesium alloy are refined and distribution uniformity of precipitations is observed after applying the middle frequency electromagnetic field.And the tensile properties of the billets produced by middle frequency electromagnetic field are increased.
基金The National Natural Science Foundation of China (Grants No. 59974009) is greatly acknowledged for their financial support.
文摘In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming.
基金financially supported by the Major State Basic Research Development Program of China(Grant No.2013CB632203)the Liaoning Provincial Natural Science Foundation of China(Grant No.201202072)+1 种基金the Program for Liaoning Excellent Talents in University(Grant No.LJQ2012023)the Fundamental Research Foundation of Central Universities(Grant Nos.N120509002 and N120309003)
文摘The low frequency electromagnetic field was applied during direct chill(DC) semi-continuous casting of the ZK60 magnesium alloy billets. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of Φ500 mm ZK60 magnesium alloy billets were investigated. The results showed that with the application of the low frequency electromagnetic field, the surface quality of the ZK60 magnesium alloy billets is markedly improved and the depth of cold fold is decreased. The microstructure of the billets is also significantly refined. Besides, the distribution of the grain size is relatively uniform from the billet surface towards its center, where the average grain size is 42 μm at surface and 50 μm at center. It also shows that the hot-tearing tendency of DC semi-continuous casting ZK60 magnesium alloy billets is significantly reduced under low frequency electromagnetic field.
基金supported by the Major State Basic Research Development Program of China (Nos. 2007CB613701 and 2007CB613702)the National Natural Science Foundation of China (Nos. 50904018, 51004032 and 50974037)+2 种基金the Program for New Century Excellent Talents in Chinese Universities (No. NCET-08-0098)the Fundamental Research Funds for the Central Universities of China (Nos. N090409002 and N090209002)the China Postdoctoral Science Foundation (No. 20100471468)
文摘AZ31 alloy billets of 200 mm in diameter were produced by three different processes of conventional direct chill (DC) casting, low-frequency electromagnetic casting (LFEC) and low-frequency electromagnetic vibration casting (LFEVC), respectively. The effect of LFEC and LFEVC on the microstructures, macmsegregation and mechanical properties of AZ31 alloy billets was investigated. In conventional DC casting, the AZ31 alloy billets exhibited coarse grains (about 370 μa) and severe segregation of A1 and Zn. In the presence of a solo low-frequency alternating magnetic field or a low-frequency electromagnetic vibration field applied during DC casting of Ф200 mm AZ31 billets, grains in the AZ31 alloy billets were effectively reffmed (about 210 μa) and the macrosegregation of A1 and Zn in the billets was greatly decreased. Furthermore, the tensile strength, fracture elongation and hardness of the as-cast AZ31 alloy billets were improved by the processes of LFEC and LFEVC relative to that cast by the process of conventional DC casting.
基金the support of the Science and Technology Program of Guangzhou, China (No.2015B090926013)the doctoral foundation of the China Ministry of Education (No.20130042130001)
文摘A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was measured. The microstructures, elemental distribution, Vickers hardness around the bonding interface, and the interfacial shear strength were examined. The results showed that the interface temperature rebounded when AA4045 melt contacted the supporting layer. The two alloys bonded well, with few defects, via the diffusion of Si and Mn in the temperature range from 569℃ to 632℃. The mean shear strength of the bonding interface was 82.3 MPa, which was greater than that of AA3003(75.8 MPa), indicating that the two alloys bonded with each other metallurgically via elemental interdiffusion. Moreover, no relative slip occurred between the two alloys during the extrusion process.
基金This work is partially supported from the National Sciences and Engineering Research Council(NSERC)of Canada Discovery Grant RGPIN48158 awarded to M.Hasan of McGill University,Montreal,for which the authors are grateful.
文摘Cooling heat flux effect in both primary and secondary cooling zone has been studied in semi-continuous casting of copper billet. Sufficient cooling is essential to reduce casting defects and to get high productivity, however low rate of solidification is aimed in order to get coarser grain size and softer metal for less losses in extrusion. A three-dimensional numerical model has been developed including solidification behavior of copper through mushy zone. At steady state and constant casting speed, solid shell thickness is monitored during the reduction of cooling rate at mould region to avoid breaking out. Heat flux intensity at mould plays important role not only in the formation of solid shell thickness. But, pool length and mushy zone thickness can be significantly increased by decreasing primary cooling intensity. Increase intensity of secondary cooling zone for two particular cases of primary cooling is tested. First case is tested at mould inlet water temperature of 38°C, and second case at water temperature of 63°C. Results showed that the combination of increasing secondary cooling intensity and reduction of primary cooling intensity can increase pool length and mushy zone thickness. Also, it is shown that, secondary cooling intensity can be magnified by up to 1.5 times for cooling water temperature of 63°C to get pool length close to that of water temperature of 38°C.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301100)the Natural Science Foundation Commission of China(Nos.51571044 and 51874062)+2 种基金the Chongqing foundation and advanced research project(No.cstc2019jcyjzdxmX0010)the Fundamental Research Funds for the Central Universities(Nos.2018CDGFCL0005 and 2019CDXYCL0031)the financial support from the China Scholarship Council(No.201906050113)。
文摘Large-scale Mg-8Gd-4Y-1Zn-Mn(wt.%)alloy ingot with a diameter of 315 mm and a length of 2410 mm was prepared through semi-continuous casting.Chemical composition,microstructure and mechanical properties at different locations of the samples with as-cast,T4 and T6 heat-treated states,respectively,were investigated.No obvious macro segregation has been detected in the high-quality alloy ingot.The main eutectic structures at all different locations are composed ofα-Mg,Mg3RE-type,Mg5RE-type and LPSO phases.At the edge of ingot,the unusual casting twins including 10-12 extension twins and 10-11 compression twins were observed due to the intensive internal stress.In T4 heat-treated alloy,the micro segregation was eliminated.The remained phases wereα-Mg and LPSO phase.Combined with the remarkable age-hardening response,T6 samples exhibits improved mechanical properties at ambient temperature,which derives from the dense prismaticβ'precipitates and profuse basalγ'precipitates.
基金supported by Major State Basic Research Project of China (GrantNo.2005CB623707)
文摘A new composite material consisting of lxxx aluminum alloy and 7xxx aluminum alloy was produced by semi-continuous casting. Macrostructure, microstructure, composition distribution and hardness distribution of composite interface were analyzed. Macrostructure shows that composite interface is planar and clean with little evidence of porosity; microstructure shows that composite interface is a kind of metallurgical bonding; composition and hardness distributions have a good corresponding relationship. At the same time, the mechanical property of composite interface was measured, the tensile strength is 71 MPa, the shearing strength is 62 MPa and the bending strength is 142.5 MPa, which can also show that composite interface is a kind of metallurgical bonding. Temperature distribution of composite interface was obtained by measuring temperatures near composite interface in lxxx aluminum alloy.
基金funded by the Beijing Nature Sciences Fund Haidian Originality Cooperation Project (Grant No. L212002)。
文摘In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occurs due to the intrusion of gases generated during the resin burning of the sand core into castings during the casting process.Therefore,a gas generation and flow constitution model was established,in which the gas generation rate is a function of temperature and time,and the flow of gas is controlled by the gas release,conservation,and Darcy's law.The heat transfer and gas flow during casting process was numerically simulated.The dangerous point of cores is firstly identified by a virtual heat transfer method based on the similarity between heat transfer and gas flow in the sand core.The gas pores in castings are predicted by the gas pressure,the viscosity and state of the melt for these dangerous points.Three distinct sand core structures were designed and used for the production of iron castings,and the simulated gas pore results were validated by the obtained castings.
文摘In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.
基金supported by the National High-tech R&D Program of China (863 Program),grant No.2009AA03Z521the foundation of Shanghai Rising-Star Program (A type),grant No. 09QA1403100
文摘The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results indicate that casting method plays a remarkable influence on the microstructure and mechanical properties of as-cast NZ30K alloy.The grain size increases from 35-40μm in the billets made by the DCC to about 100-120μm in the billets by the SMC.The aggregation of Mg12Nd usually found at the triple joints of grain boundaries in the billets prepared by SMC while is not observable from the billets by DCC.The tensile strengths and elongations of the billets are 195.2 MPa and 15.5% by DCC,and 162.5 MPa and 3.2% by SMC,respectively.The tensile strength of the alloy by DCC is remarkably enhanced by T6 heat treatment,which reached 308.5 MPa.Fracture surfaces of NZ30K alloy have been characterized as intergranular fracture by SMC and quasi-cleavage fracture by DCC,respectively.
文摘The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure, hardness are analyzed, and the stability of gradient distribution of composition, macrostructure and hardness along the axial direction of the ingot is also studied. The results show that diffe rent composition profiles can be achieved by adjusting the processing parameters; the volume fraction of inner alloy in the ingot can be increased by enlarging the throttle bore diameter and elevating the temperature of inner melt; quasi steady solidification can be realized within 20 s during cast processing, and consistent quality ingot is obtained by controlling the casting speed and liquid height of inner melt.
基金Project(2007CB613702) supported by the National Basic Research Program of ChinaProject(CSTD2006AA4012) supported by the Key Technologies R&D Program of the Chongqing Science and Technology Commission
文摘Mg-1.5Zn-0.2Zr-xCe (x=0, 0.1, 0.3, 0.5, mass fraction, %) alloys were prepared by conventional semi-continuous casting. The effect of rare earth Ce on the microstructure of Mg-1.5Zn-0.2Zr-xCe alloys was studied and the distribution of Ce was analyzed by optical microscopy (OM), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that Ce element exists in the form of Mg12Ce phase and has an obvious refining effect on the microstructure of test alloys. As the Ce content increases, the grain size reduces, the grain boundaries turn thinner, and the distribution of Mg12Ce precipitates becomes more and more dispersed. The Mg-1.5Zn-0.2Zr alloy with 0.3%Ce has the best refinement effect. From center to periphery of the ingot, the amount of granular precipitates in the grain reduces. In longitudinal section of the ingot, some relative long columnar grains appear.