We propose a promising scheme to decelerate a CW molecular beam by using a red-detuned quasi-cw semi-Gaussian laser beam (SGB). We study the dynamical process of the deceleration for a CW deuterated ammonia (ND3) ...We propose a promising scheme to decelerate a CW molecular beam by using a red-detuned quasi-cw semi-Gaussian laser beam (SGB). We study the dynamical process of the deceleration for a CW deuterated ammonia (ND3) molecular beam by Monte-Carlo simulation method. Our study shows that we can obtain a ND3 molecular beam with a relative average kinetic energy loss of about 10% and a relative output molecular number of more than 90% by using a single quasi-cw SGB with a power of 1.5kW and a maximum optical well depth of 7.33mK.展开更多
We investigate the diffraction characteristics of an incident Gaussian beam cut by a straight edge bounding a semi-infinite opaque plane using Kirchhoff scalar wave theory in the Fresnel limit, and propose a new and s...We investigate the diffraction characteristics of an incident Gaussian beam cut by a straight edge bounding a semi-infinite opaque plane using Kirchhoff scalar wave theory in the Fresnel limit, and propose a new and simple mirror scheme to reflect atoms by using the intensity gradient induced by a blue-detuned semi-Gaussian laser beam. The optical potential of the diffracted light of the knife-cut semi-Gaussian beam for 85 Rb atom and its spontaneous emission probability are calculated and compared with the performance of the evanescent-wave mirror. Our study shows that the optical potential of the diffracted light of the semi-Gaussian beam is far higher than that of the evanescent light wave, and the maximum normal velocity of the incident atoms can be far greater than that of the evanescent light wave under the same parameters, so the blue-detuned semioGaussian beam, as a novel atomic mirror, can be used to efficiently reflect cold atoms with a normal velocity of greater than 1 m/s. However, the intensity gradient (force) of the diffracted light of the semi-Gaussian-beam is much smaller than that of the evanescent light wave, so its spontaneous emission probability is greater than that from the evanescent-wave when the normal velocity of incident atoms is greater.展开更多
This paper investigates analysis and design of Low-Density Parity-Check (LDPC) coded Bit Interleaved Coded Modulation (BICM) over Additive White Gaussian Noise (AWGN) channel. It focuses on Gray-labeled 8-ary Ph...This paper investigates analysis and design of Low-Density Parity-Check (LDPC) coded Bit Interleaved Coded Modulation (BICM) over Additive White Gaussian Noise (AWGN) channel. It focuses on Gray-labeled 8-ary Phase-Shift-Keying (8PSK) modulation and employs a Maximum A Posteriori (MAP) symbol-to-bit metric calculator at the receiver. An equivalent model of a BICM communication channel with ideal interleaving is presented. The probability distribution function of log-likelihood ratio messages from the MAP receiver can be approximated by a mixture of symmetric Gaussian densities. As a result semi-Gaussian approximation can be used to analyze the decoder. Extrinsic information transfer charts are employed to describe the convergence behavior of LDPC decoder. The design of irregular LDPC codes reduces to a linear programming problem on two-dimensional variable edge-degree distribution. This method allows irregular code design in a wider range of rates without any limit on the maximum node degree and can be used to design irregular codes having rates varying from 0.5275 to 0.9099. The designed convergence thresholds are only a few tenths, even a few hundredths of a decibel from the capacity limits. It is shown by Monte Carlo simulations that, when the block length is 30,000, these codes operate about 0.62-0.75 dB from the capacity limit at a bit error rate of 10s.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374029, 10434060 and 10674047)the National Key Basic Research and Development Program of China (Grant No 2006CB921604)+2 种基金the Key Basic Program of Shanghai Municipality (Grant No 07JC14017)the Program for Changjiang Scholar and Innovative Research TeamShanghai Leading Academic Discipline Project (Grant No B408)
文摘We propose a promising scheme to decelerate a CW molecular beam by using a red-detuned quasi-cw semi-Gaussian laser beam (SGB). We study the dynamical process of the deceleration for a CW deuterated ammonia (ND3) molecular beam by Monte-Carlo simulation method. Our study shows that we can obtain a ND3 molecular beam with a relative average kinetic energy loss of about 10% and a relative output molecular number of more than 90% by using a single quasi-cw SGB with a power of 1.5kW and a maximum optical well depth of 7.33mK.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10174050 and 10374029), the Key Program of National Natural Science Foundation of China (Grant No 10434060), and by the Shanghai Priority Academic Discipline and the 211 Foundation of the Ministry of Education of China.
文摘We investigate the diffraction characteristics of an incident Gaussian beam cut by a straight edge bounding a semi-infinite opaque plane using Kirchhoff scalar wave theory in the Fresnel limit, and propose a new and simple mirror scheme to reflect atoms by using the intensity gradient induced by a blue-detuned semi-Gaussian laser beam. The optical potential of the diffracted light of the knife-cut semi-Gaussian beam for 85 Rb atom and its spontaneous emission probability are calculated and compared with the performance of the evanescent-wave mirror. Our study shows that the optical potential of the diffracted light of the semi-Gaussian beam is far higher than that of the evanescent light wave, and the maximum normal velocity of the incident atoms can be far greater than that of the evanescent light wave under the same parameters, so the blue-detuned semioGaussian beam, as a novel atomic mirror, can be used to efficiently reflect cold atoms with a normal velocity of greater than 1 m/s. However, the intensity gradient (force) of the diffracted light of the semi-Gaussian-beam is much smaller than that of the evanescent light wave, so its spontaneous emission probability is greater than that from the evanescent-wave when the normal velocity of incident atoms is greater.
文摘This paper investigates analysis and design of Low-Density Parity-Check (LDPC) coded Bit Interleaved Coded Modulation (BICM) over Additive White Gaussian Noise (AWGN) channel. It focuses on Gray-labeled 8-ary Phase-Shift-Keying (8PSK) modulation and employs a Maximum A Posteriori (MAP) symbol-to-bit metric calculator at the receiver. An equivalent model of a BICM communication channel with ideal interleaving is presented. The probability distribution function of log-likelihood ratio messages from the MAP receiver can be approximated by a mixture of symmetric Gaussian densities. As a result semi-Gaussian approximation can be used to analyze the decoder. Extrinsic information transfer charts are employed to describe the convergence behavior of LDPC decoder. The design of irregular LDPC codes reduces to a linear programming problem on two-dimensional variable edge-degree distribution. This method allows irregular code design in a wider range of rates without any limit on the maximum node degree and can be used to design irregular codes having rates varying from 0.5275 to 0.9099. The designed convergence thresholds are only a few tenths, even a few hundredths of a decibel from the capacity limits. It is shown by Monte Carlo simulations that, when the block length is 30,000, these codes operate about 0.62-0.75 dB from the capacity limit at a bit error rate of 10s.