<p align="justify"> <span style="font-family:Verdana;">In this paper, tiling a plane with equilateral semi-regular convex polygons is considered, and, that is, tiling with equilateral p...<p align="justify"> <span style="font-family:Verdana;">In this paper, tiling a plane with equilateral semi-regular convex polygons is considered, and, that is, tiling with equilateral polygons of</span><span style="font-family:Verdana;"> the same type. Tiling a plane with semi-regular polygons depends not only on the type of a semi-regular polygon, but also on its interior angles that join at a node. In relation to the interior angles, semi-regular equilateral polygons with the same or different interior angles can be joined in the nodes. Here, we shall first consider tiling a plane with semi-regular equilateral polygons with 2m-sides. The analysis is performed by determining the set of all integer solutions of the corresponding Diophantine equation in the form of <img alt="" src="Edit_c185b1c4-6b78-4af5-b1c2-4932af77bf65.png" />, where<img alt="" src="Edit_2e6548d5-3254-4005-b19e-9d49cd5d6f81.png" />are the non-negative integers which are not equal to zero at the same time, and <img alt="" src="Edit_a6dbde8a-5f3a-43d4-bc89-27dcc3057d23.png" />are the interior angles of a semi-regular equilateral polygon from the characteristic angle. It is shown that of all semi-regular equilateral polygons with 2m-sides, a plane can be tiled only with the semi-regular equilateral quadrilaterals and semi-regular equilateral hexagons. Then, the problem of tiling a plane with semi-regular equilateral quadrilaterals is analyzed in detail, and then the one with semi-regular equilateral hexagons. For these semi-regular polygons, all possible solutions of the corresponding Diophantine equations were analyzed and all nodes were determined, and then the problem for different values of characteristic elements was observed. For some of the observed cases of tiling a plane with these semi-regular polygons, some graphical presentations of tiling constructions are also given.</span> </p>展开更多
As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is...As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is only possible by overlaps and (or) gaps between the building stones. Resecting small parts of overlaps and filling gaps between the heptagons, one may come to simple parqueting with only a few kinds of basic tiles related to sevenfold symmetry. This is appropriate for parqueting with a center of seven-fold symmetry that is illustrated by figures. Choosing from the basic patterns with sevenfold symmetry small parts as elementary stripes or elementary cells, one may form by their discrete translation in one or two different directions periodic bordures or tessellation of the whole plane but the sevenfold point-group symmetry of the whole plane is then lost and there remains only such symmetry in small neighborhoods around one or more centers. From periodic tiling, we make the transition to aperiodic tiling of the plane. This is analogous to Penrose tiling which is mostly demonstrated with basic elements of fivefold symmetry and we show that this is also possible with elements of sevenfold symmetry. The two possible regular star-heptagons and a semi-regular star-heptagon play here a basic role.展开更多
The authOrs define the scenery flow of the torus. The flow space is the union of all flat 2- dimensional tori of area 1 with a marked direction (or equivalently the union of all tori with a quadratic differential of n...The authOrs define the scenery flow of the torus. The flow space is the union of all flat 2- dimensional tori of area 1 with a marked direction (or equivalently the union of all tori with a quadratic differential of norm 1). This is a 5-dimensional space, and the flow acts by following individual points under an extremal deformation of the quadratic differential. The authors define associated horocycle and translation flows; the latter preserve each torus and are the horizontal and vertical flows of the corresponding quadratic differential. The scenery flow projects to the geodesic flow on the modular surface, and admits, for each orientation preserving hyperbolic toral automorphism, an invariant 3-dimensional subset on which it is the suspension flow of that map. The authors first give a simple algebraic definition in terms of the group of affine maps of the plane, and prove that the flow is Anosov. They give an explicit formula for the first-return map of the flow on convenient cross-sections. Then, in the main part of the paper, the authors give several different models for the flow and its cross-sections, in terms of : stacking and rescaling periodic tilings of the plane; symbolic dynamics: the natural extension of the recoding of Sturmian sequences, or the S-adic system generated by two substitutions; zooming and subdividing quasi-periodic tilings of the real line, or aperiodic quasicrystals of minimal complexity; the natural extension of two-dimensional continued fractions; induction on exchanges of three intervals; rescaling on pairs of transverse measure foliations on the torus, or the Teichmuller flow on the twice-punctured torus.展开更多
文摘<p align="justify"> <span style="font-family:Verdana;">In this paper, tiling a plane with equilateral semi-regular convex polygons is considered, and, that is, tiling with equilateral polygons of</span><span style="font-family:Verdana;"> the same type. Tiling a plane with semi-regular polygons depends not only on the type of a semi-regular polygon, but also on its interior angles that join at a node. In relation to the interior angles, semi-regular equilateral polygons with the same or different interior angles can be joined in the nodes. Here, we shall first consider tiling a plane with semi-regular equilateral polygons with 2m-sides. The analysis is performed by determining the set of all integer solutions of the corresponding Diophantine equation in the form of <img alt="" src="Edit_c185b1c4-6b78-4af5-b1c2-4932af77bf65.png" />, where<img alt="" src="Edit_2e6548d5-3254-4005-b19e-9d49cd5d6f81.png" />are the non-negative integers which are not equal to zero at the same time, and <img alt="" src="Edit_a6dbde8a-5f3a-43d4-bc89-27dcc3057d23.png" />are the interior angles of a semi-regular equilateral polygon from the characteristic angle. It is shown that of all semi-regular equilateral polygons with 2m-sides, a plane can be tiled only with the semi-regular equilateral quadrilaterals and semi-regular equilateral hexagons. Then, the problem of tiling a plane with semi-regular equilateral quadrilaterals is analyzed in detail, and then the one with semi-regular equilateral hexagons. For these semi-regular polygons, all possible solutions of the corresponding Diophantine equations were analyzed and all nodes were determined, and then the problem for different values of characteristic elements was observed. For some of the observed cases of tiling a plane with these semi-regular polygons, some graphical presentations of tiling constructions are also given.</span> </p>
文摘As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is only possible by overlaps and (or) gaps between the building stones. Resecting small parts of overlaps and filling gaps between the heptagons, one may come to simple parqueting with only a few kinds of basic tiles related to sevenfold symmetry. This is appropriate for parqueting with a center of seven-fold symmetry that is illustrated by figures. Choosing from the basic patterns with sevenfold symmetry small parts as elementary stripes or elementary cells, one may form by their discrete translation in one or two different directions periodic bordures or tessellation of the whole plane but the sevenfold point-group symmetry of the whole plane is then lost and there remains only such symmetry in small neighborhoods around one or more centers. From periodic tiling, we make the transition to aperiodic tiling of the plane. This is analogous to Penrose tiling which is mostly demonstrated with basic elements of fivefold symmetry and we show that this is also possible with elements of sevenfold symmetry. The two possible regular star-heptagons and a semi-regular star-heptagon play here a basic role.
文摘The authOrs define the scenery flow of the torus. The flow space is the union of all flat 2- dimensional tori of area 1 with a marked direction (or equivalently the union of all tori with a quadratic differential of norm 1). This is a 5-dimensional space, and the flow acts by following individual points under an extremal deformation of the quadratic differential. The authors define associated horocycle and translation flows; the latter preserve each torus and are the horizontal and vertical flows of the corresponding quadratic differential. The scenery flow projects to the geodesic flow on the modular surface, and admits, for each orientation preserving hyperbolic toral automorphism, an invariant 3-dimensional subset on which it is the suspension flow of that map. The authors first give a simple algebraic definition in terms of the group of affine maps of the plane, and prove that the flow is Anosov. They give an explicit formula for the first-return map of the flow on convenient cross-sections. Then, in the main part of the paper, the authors give several different models for the flow and its cross-sections, in terms of : stacking and rescaling periodic tilings of the plane; symbolic dynamics: the natural extension of the recoding of Sturmian sequences, or the S-adic system generated by two substitutions; zooming and subdividing quasi-periodic tilings of the real line, or aperiodic quasicrystals of minimal complexity; the natural extension of two-dimensional continued fractions; induction on exchanges of three intervals; rescaling on pairs of transverse measure foliations on the torus, or the Teichmuller flow on the twice-punctured torus.