期刊文献+
共找到144篇文章
< 1 2 8 >
每页显示 20 50 100
Semi-supervised Ladder Networks for Speech Emotion Recognition 被引量:9
1
作者 Jian-Hua Tao Jian Huang +2 位作者 Ya Li Zheng Lian Ming-Yue Niu 《International Journal of Automation and computing》 EI CSCD 2019年第4期437-448,共12页
As a major component of speech signal processing, speech emotion recognition has become increasingly essential to understanding human communication. Benefitting from deep learning, many researchers have proposed vario... As a major component of speech signal processing, speech emotion recognition has become increasingly essential to understanding human communication. Benefitting from deep learning, many researchers have proposed various unsupervised models to extract effective emotional features and supervised models to train emotion recognition systems. In this paper, we utilize semi-supervised ladder networks for speech emotion recognition. The model is trained by minimizing the supervised loss and auxiliary unsupervised cost function. The addition of the unsupervised auxiliary task provides powerful discriminative representations of the input features, and is also regarded as the regularization of the emotional supervised task. We also compare the ladder network with other classical autoencoder structures. The experiments were conducted on the interactive emotional dyadic motion capture (IEMOCAP) database, and the results reveal that the proposed methods achieve superior performance with a small number of labelled data and achieves better performance than other methods. 展开更多
关键词 SPEECH EMOTION RECOGNITION the ladder network semi-supervised learning autoencoder REGULARIZATION
原文传递
Decentralized Semi-Supervised Learning for Stochastic Configuration Networks Based on the Mean Teacher Method
2
作者 Kaijing Li Wu Ai 《Journal of Computer and Communications》 2024年第4期247-261,共15页
The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy ... The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments. 展开更多
关键词 Stochastic Neural network Consistency Regularization semi-supervised Learning Decentralized Learning
下载PDF
Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification 被引量:34
3
作者 Ya Tu Yun Lin +1 位作者 Jin Wang Jeong-Uk Kim 《Computers, Materials & Continua》 SCIE EI 2018年第5期243-254,共12页
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp... Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier. 展开更多
关键词 Deep Learning automated modulation classification semi-supervised learning generative adversarial networks
下载PDF
Semi-supervised learning based hybrid beamforming under time-varying propagation environments
4
作者 Yin Long Hang Ding Simon Murphy 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1168-1177,共10页
Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi... Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi-supervised Incremental Learning(IL),we propose an online hybrid beamforming scheme.Firstly,given the constraint of constant modulus on analog beamformer and combiner,we propose a new broadnetwork-based structure for the design model of hybrid beamforming.Compared with the existing network structure,the proposed network structure can achieve better transmission performance and lower complexity.Moreover,to enhance the efficiency of IL further,by combining the semi-supervised graph with IL,we propose a hybrid beamforming scheme based on chunk-by-chunk semi-supervised learning,where only few transmissions are required to calculate the label and all other unlabelled transmissions would also be put into a training data chunk.Unlike the existing single-by-single approach where transmissions during the model update are not taken into the consideration of model update,all transmissions,even the ones during the model update,would make contributions to model update in the proposed method.During the model update,the amount of unlabelled transmissions is very large and they also carry some information,the prediction performance can be enhanced to some extent by these unlabelled channel data.Simulation results demonstrate the spectral efficiency of the proposed method outperforms that of the existing single-by-single approach.Besides,we prove the general complexity of the proposed method is lower than that of the existing approach and give the condition under which its absolute complexity outperforms that of the existing approach. 展开更多
关键词 Hybrid beamforming Time-varying environments Broad network semi-supervised learning Online learning
下载PDF
Semi-supervised surface defect detection of wind turbine blades with YOLOv4
5
作者 Chao Huang Minghui Chen Long Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期284-292,共9页
Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking ... Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR. 展开更多
关键词 Defect detection Generative adversarial network scSE attention semi-supervision Wind turbine
下载PDF
Labeling Malicious Communication Samples Based on Semi-Supervised Deep Neural Network 被引量:2
6
作者 Guolin Shao Xingshu Chen +1 位作者 Xuemei Zeng Lina Wang 《China Communications》 SCIE CSCD 2019年第11期183-200,共18页
The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has rec... The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has received a lot of research attention and various universal labeling methods have been proposed.However,the labeling task of malicious communication samples targeted at advanced threats has to face the two practical challenges:the difficulty of extracting effective features in advance and the complexity of the actual sample types.To address these problems,we proposed a sample labeling method for malicious communication based on semi-supervised deep neural network.This method supports continuous learning and optimization feature representation while labeling sample,and can handle uncertain samples that are outside the concerned sample types.According to the experimental results,our proposed deep neural network can automatically learn effective feature representation,and the validity of features is close to or even higher than that of features which extracted based on expert knowledge.Furthermore,our proposed method can achieve the labeling accuracy of 97.64%~98.50%,which is more accurate than the train-then-detect,kNN and LPA methodsin any labeled-sample proportion condition.The problem of insufficient labeled samples in many network attack detecting scenarios,and our proposed work can function as a reference for the sample labeling tasks in the similar real-world scenarios. 展开更多
关键词 sample LABELING MALICIOUS COMMUNICATION semi-supervised learning DEEP neural network LABEL propagation
下载PDF
Multiscale and Auto-Tuned Semi-Supervised Deep Subspace Clustering and Its Application in Brain Tumor Clustering
7
作者 Zhenyu Qian Yizhang Jiang +4 位作者 Zhou Hong Lijun Huang Fengda Li Khin Wee Lai Kaijian Xia 《Computers, Materials & Continua》 SCIE EI 2024年第6期4741-4762,共22页
In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world da... In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework. 展开更多
关键词 Deep subspace clustering multiscale network structure automatic hyperparameter tuning semi-supervised medical image clustering
下载PDF
General image classification method based on semi-supervised generative adversarial networks 被引量:2
8
作者 Su Lei Xu Xiangyi +1 位作者 Lu Qiyu Zhang Wancai 《High Technology Letters》 EI CAS 2019年第1期35-41,共7页
Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis... Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated with generative adversarial network on image classification tasks to improve the image classification accuracy. Two applications of GANs are mainly focused on: semi-supervised learning and generation of images which can be as real as possible. The whole process is divided into two sections. First, only a small part of the dataset is utilized as labeled training data. And then a huge amount of samples generated from the generator is added into the training samples to improve the generalization of the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is made which may contain potential information. Thus, the classification accuracy of the discriminator can be improved. Experimental results demonstrate the improvement of the classification accuracy of discriminator among different datasets, such as MNIST, CIFAR-10. 展开更多
关键词 generative adversarial network(GAN) semi-supervised image classification
下载PDF
Transfer Learning-Based Semi-Supervised Generative Adversarial Network for Malaria Classification
9
作者 Ibrar Amin Saima Hassan +1 位作者 Samir Brahim Belhaouari Muhammad Hamza Azam 《Computers, Materials & Continua》 SCIE EI 2023年第3期6335-6349,共15页
Malaria is a lethal disease responsible for thousands of deaths worldwide every year.Manual methods of malaria diagnosis are timeconsuming that require a great deal of human expertise and efforts.Computerbased automat... Malaria is a lethal disease responsible for thousands of deaths worldwide every year.Manual methods of malaria diagnosis are timeconsuming that require a great deal of human expertise and efforts.Computerbased automated diagnosis of diseases is progressively becoming popular.Although deep learning models show high performance in the medical field,it demands a large volume of data for training which is hard to acquire for medical problems.Similarly,labeling of medical images can be done with the help of medical experts only.Several recent studies have utilized deep learning models to develop efficient malaria diagnostic system,which showed promising results.However,the most common problem with these models is that they need a large amount of data for training.This paper presents a computer-aided malaria diagnosis system that combines a semi-supervised generative adversarial network and transfer learning.The proposed model is trained in a semi-supervised manner and requires less training data than conventional deep learning models.Performance of the proposed model is evaluated on a publicly available dataset of blood smear images(with malariainfected and normal class)and achieved a classification accuracy of 96.6%. 展开更多
关键词 Generative adversarial network transfer learning semi-supervised MALARIA VGG16
下载PDF
Semi-Supervised Medical Image Segmentation Based on Generative Adversarial Network
10
作者 Yun Tan Weizhao Wu +2 位作者 Ling Tan Haikuo Peng Jiaohua Qin 《Journal of New Media》 2022年第3期155-164,共10页
At present,segmentation for medical image is mainly based on fully supervised model training,which consumes a lot of time and labor for dataset labeling.To address this issue,we propose a semi-supervised medical image... At present,segmentation for medical image is mainly based on fully supervised model training,which consumes a lot of time and labor for dataset labeling.To address this issue,we propose a semi-supervised medical image segmentation model based on a generative adversarial network framework for automated segmentation of arteries.The network is mainly composed of two parts:a segmentation network for medical image segmentation and a discriminant network for evaluating segmentation results.In the initial stage of network training,a fully supervised training method is adopted to make the segmentation network and the discrimination network have certain segmentation and discrimination capabilities.Then a semi-supervised method is adopted to train the model,in which the discriminant network will generate pseudo-labels on the results of the segmentation for semi-supervised training of the segmentation network.The proposed method can use a small part of annotated dataset to realize the segmentation of medical images and effectively solve the problem of insufficient medical image annotation data. 展开更多
关键词 Medical image semi-supervised U-net generative adversarial network image segmentation
下载PDF
Fault diagnosis of electric transformers based on infrared image processing and semi-supervised learning 被引量:5
11
作者 Jian Fang Fan Yang +2 位作者 Rui Tong Qin Yu Xiaofeng Dai 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期596-607,共12页
It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and ac... It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method. 展开更多
关键词 TRANSFORMER Fault diagnosis Infrared image Generative adversarial network semi-supervised learning
下载PDF
RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes 被引量:5
12
作者 DAI Wei HU Jin-cheng +2 位作者 CHENG Yu-hu WANG Xue-song CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3338-3350,共13页
Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin... Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application. 展开更多
关键词 semi-supervised learning(SSL) L2-fusion term online adaptation random vector functional link network(RVFLN)
下载PDF
A Semi-Supervised WLAN Indoor Localization Method Based on l1-Graph Algorithm 被引量:1
13
作者 Liye Zhang Lin Ma Yubin Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期55-61,共7页
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle... For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase. 展开更多
关键词 indoor location estimation l1-graph algorithm semi-supervised learning wireless local area networks(WLAN)
下载PDF
ANALYSIS OF DYNAMIC CHARACTERISTICS FOR RCG LINES USING THEORY OF LADDER NETWORKS
14
作者 王士杰 《Journal of China Textile University(English Edition)》 EI CAS 1989年第2期56-63,共8页
The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time consta... The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time constants and simplifying the transfer functions for reg lines are alsopresented. 展开更多
关键词 dynamic characteristics RC circuit ladder networkS transfer functions time CONSTANTS RC UNIFORM ladder networkS rcg LINES PADE approximation
下载PDF
Reflective Ladder Topology Network Based on White Light Fiber-Optic Mach-Zehnder Interferometer
15
作者 Song Li Ferhati Mokhtar Li-Bo Yuan 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期63-66,共4页
In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder top... In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder topology network ( RLT) with tailored formula was proposed. The topology network consists of 6 rungs sensing elements linked by 5 couplers. Two cases with different choices of couplers were contrasted: one is equal coupling ratio,and the other is tailored coupling ratio. Through the simulation of these two cases,the detailed multiplexing capability was analyzed,and accordingly the experiments were also carried out. The simulation results showed that,the tailored formula enhances the multiplexing capability of the structure. In the first case, the maximum number of sensors which can be multiplexed is 8,and in the other case is 12 fiber optic sensors. The experimental results have a good agreement with numerical simulation results. Thus,it is considered expedient to incorporate RLT into large-scale building,grounds,bridges,dams,tunnels,highways and perimeter security. 展开更多
关键词 fiber-optic sensor white light interferometer MULTIPLEXING technique REFLECTIVE ladder topology network TAILORED FORMULA
下载PDF
A Novel 3D Supramolecular Network Constructed from [Cu(4,4'-bipyridine)(O_2CMe)_2]_2 Molecular Ladders by Hydrogen Bonding
16
作者 YANG E WANG Xiao-Qin QIN Ye-Yan 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2006年第11期1365-1368,共4页
The title complex, {[Cu2(4,4'-bipyridine)2(μ-O2CMe)2(O2CMe)2],H2O}n 1, was synthesized and structurally characterized by X-ray crystallography. It crystallizes in monoclinic, space group C2/c with a = 13.4474... The title complex, {[Cu2(4,4'-bipyridine)2(μ-O2CMe)2(O2CMe)2],H2O}n 1, was synthesized and structurally characterized by X-ray crystallography. It crystallizes in monoclinic, space group C2/c with a = 13.4474(5), b = 11.7566(2), c = 19.5380(6)A, β = 92.930(2)°, V = 3084.84(16) A^3, Z = 4, Cu2C28N409H30, Mr = 693.64, Dc = 1.494 g/cm^3, F(000) = 1424 and μ(MoKα) = 1.436 mm^-1. With the use of 2062 observed reflections (I 〉 2σ(I)), the structure was refined to R = 0.0769 and wR = 0.2154. In complex 1, the dimeric copper acetate units are linked through 4,4’-bipyridine to yield ID molecular ladders. These ladders are connected via O-H…O hydrogen bonds to generate 2D layers, which are further linked through C-H…O hydrogen bonds to give a 3D supramolecular network. 展开更多
关键词 molecular ladder dimeric copper acetate 3D supramolecular network
下载PDF
Hyper-Parameter Optimization of Semi-Supervised GANs Based-Sine Cosine Algorithm for Multimedia Datasets
17
作者 Anas Al-Ragehi Said Jadid Abdulkadir +2 位作者 Amgad Muneer Safwan Sadeq Qasem Al-Tashi 《Computers, Materials & Continua》 SCIE EI 2022年第10期2169-2186,共18页
Generative Adversarial Networks(GANs)are neural networks that allow models to learn deep representations without requiring a large amount of training data.Semi-Supervised GAN Classifiers are a recent innovation in GAN... Generative Adversarial Networks(GANs)are neural networks that allow models to learn deep representations without requiring a large amount of training data.Semi-Supervised GAN Classifiers are a recent innovation in GANs,where GANs are used to classify generated images into real and fake and multiple classes,similar to a general multi-class classifier.However,GANs have a sophisticated design that can be challenging to train.This is because obtaining the proper set of parameters for all models-generator,discriminator,and classifier is complex.As a result,training a single GAN model for different datasets may not produce satisfactory results.Therefore,this study proposes an SGAN model(Semi-Supervised GAN Classifier).First,a baseline model was constructed.The model was then enhanced by leveraging the Sine-Cosine Algorithm and Synthetic Minority Oversampling Technique(SMOTE).SMOTE was used to address class imbalances in the dataset,while Sine Cosine Algorithm(SCA)was used to optimize the weights of the classifier models.The optimal set of hyperparameters(learning rate and batch size)were obtained using grid manual search.Four well-known benchmark datasets and a set of evaluation measures were used to validate the proposed model.The proposed method was then compared against existing models,and the results on each dataset were recorded and demonstrated the effectiveness of the proposed model.The proposed model successfully showed improved test accuracy scores of 1%,2%,15%,and 5%on benchmarking multimedia datasets;Modified National Institute of Standards and Technology(MNIST)digits,Fashion MNIST,Pneumonia Chest X-ray,and Facial Emotion Detection Dataset,respectively. 展开更多
关键词 Generative adversarial networks semi-supervised generative adversarial network sine-cosine algorithm SMOTE principal component analysis grid search
下载PDF
Error assessment of laser cutting predictions by semi-supervised learning
18
作者 Mustafa Zaidi Imran Amin +1 位作者 Ahmad Hussain Nukman Yusoff 《Journal of Central South University》 SCIE EI CAS 2014年第10期3736-3745,共10页
Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification... Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values. 展开更多
关键词 semi-supervised learning training algorithm kerf width edge quality laser cutting process artificial neural network(ANN)
下载PDF
Semi-Supervised Clustering Fingerprint Positioning Algorithm Based on Distance Constraints
19
作者 Ying Xia Zhongzhao Zhang +1 位作者 Lin Ma Yao Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第6期55-61,共7页
With the rapid development of WLAN( Wireless Local Area Network) technology,an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online computation.In this paper,... With the rapid development of WLAN( Wireless Local Area Network) technology,an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online computation.In this paper,it proposes a novel fingerprint positioning algorithm known as semi-supervised affinity propagation clustering based on distance function constraints. We show that by employing affinity propagation techniques,it is able to use a fractional labeled data to adjust similarity matrix of signal space to cluster reference points with high accuracy. The semi-supervised APC uses a combination of machine learning,clustering analysis and fingerprinting algorithm. By collecting data and testing our algorithm in a realistic indoor WLAN environment,the experimental results indicate that the proposed algorithm can improve positioning accuracy while reduce the online localization computation,as compared with the widely used K nearest neighbor and maximum likelihood estimation algorithms. 展开更多
关键词 wireless local area network(WLAN) semi-supervised similarity matrix CLUSTERING affinity propagation
下载PDF
Semi-Supervised Clustering Algorithm Based on Deep Feature Mapping
20
作者 Xiong Xu Chun Zhou +2 位作者 Chenggang Wang Xiaoyan Zhang Hua Meng 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期815-831,共17页
Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.The... Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.Therefore,measuring the distance between sample points is crucial to the effectiveness of clustering.Filtering features by label information and mea-suring the distance between samples by these features is a common supervised learning method to reconstruct distance metric.However,in many application scenarios,it is very expensive to obtain a large number of labeled samples.In this paper,to solve the clustering problem in the few supervised sample and high data dimensionality scenarios,a novel semi-supervised clustering algorithm is proposed by designing an improved prototype network that attempts to reconstruct the distance metric in the sample space with a small amount of pairwise supervised information,such as Must-Link and Cannot-Link,and then cluster the data in the new metric space.The core idea is to make the similar ones closer and the dissimilar ones further away through embedding mapping.Extensive experiments on both real-world and synthetic datasets show the effectiveness of this algorithm.Average clustering metrics on various datasets improved by 8%compared to the comparison algorithm. 展开更多
关键词 Metric learning semi-supervised clustering prototypical network feature mapping
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部