The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the ...The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the shrinkage of the Aral Sea, widespread desertification, soil salinization, biodiversity loss, frequent sand storms, and many other ecological disasters. This paper is a review article based upon the collection, identification and collation of previous studies of environmental changes and regional developments in Central Asia in the past 30 years. Most recent studies have reached a consensus that the temperature rise in Central Asia is occurring faster than the global average. This warming trend will not only result in a higher evaporation in the basin oases, but also to a significant retreat of glaciers in the mountainous areas. Water is the key to sustainable development in the arid and semi-arid regions in Central Asia. The uneven distribution, over consumption, and pollution of water resources in Central Asia have caused severe water supply problems, which have been affecting regional harmony and development for the past 30 years. The widespread and significant land use changes in the 1990 s could be used to improve our understanding of natural variability and human interaction in the region. There has been a positive trend of trans-border cooperation among the Central Asian countries in recent years. International attention has grown and research projects have been initiated to provide water and ecosystem protection in Central Asia. However, the agreements that have been reached might not be able to deliver practical action in time to prevent severe ecological disasters. Water management should be based on hydrographic borders and ministries should be able to make timely decisions without political intervention. Fully integrated management of water resources, land use and industrial development is essential in Central Asia. The ecological crisis should provide sufficient motivation to reach a consensus on unified water management throughout the region.展开更多
Soil organic matter (SOM) is an important term to realize soil productivity and quality that is extremely influential on soil physical, chemical and biological processes;SOM is one of the key soil properties controlli...Soil organic matter (SOM) is an important term to realize soil productivity and quality that is extremely influential on soil physical, chemical and biological processes;SOM is one of the key soil properties controlling nutrient budgets in agricultural production systems and is an important index of soil productivity. Remote sensing (RS) and Geographic Information System (GIS) techniques were used to assess organic matter in soil and determine the relationship between measures SOM in field and digital data to calculate or obtain the correlation coefficients applied to evaluate the strength and direction of the linear relationships. In this study Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Bare Soil Index (BSI) were used. The results show that the relationship between vegetation indices (NDVI, SAVI) and SOM in whole study area was (R2 = 0.19, p 2 = 0.01, p 2 = 0.13, p 2 = 0.11, p < 0.05), soil organic carbon increases with increasing NDVI and decreasing BSI. NDVI, SAVI and BSI were considered a useful index to detect the spatial distribution of SOM concentrations and mapping using remote sensing data.展开更多
Agriculture in arid and semi-arid lands of Kenya is depends on seasonal characteristics of rainfall. This study seeks to distinguish components of regional climate variability, especially El Ni?o Southern Oscillation ...Agriculture in arid and semi-arid lands of Kenya is depends on seasonal characteristics of rainfall. This study seeks to distinguish components of regional climate variability, especially El Ni?o Southern Oscillation events and their impact on the growing season normalized difference vegetation index (NDVI). Datasets used were: 1) rainfall (1961-2003) and 2) NDVI (1981-2003). Results indicate that climate variability is persistent in the arid and semi-arid lands of Kenya and continues to affect vegetation condition and consequently crop production. Correlation calculations between seasonal NDVI and rainfall shows that the October-December (OND) growing season is more reliable than March-May (MAM) season. Results show that observed biomass trends are not solely explained by rainfall variability but also changes in land cover and land use. Results show that El Ni?o and La Ni?a events in southeast Kenya vary in magnitude, both in time and space as is their impact on vegetation;and that variation in El Ni?o intensity is higher than during La Ni?a events. It is suggested that farmers should be encouraged to increase use of farm input in their agricultural enterprises during the OND season;particularly when above normal rains are forecast. The close relationship between rainfall and NDVI yield ground for improvement in the prediction of local level rainfall. Effective dissemination of this information to stakeholders will go along way to ameliorate the suffering of many households and enable government to plan ahead of a worse season. This would greatly reduce the vulnerability of livelihoods to climate related disasters by improving their management.展开更多
The magnitude and trend of temperature and rainfall extremes as indicators of climate variability and change were investigated in the Arid and Semi-Arid Lands (ASALs) of Kenya using in-situ measurements and gridded cl...The magnitude and trend of temperature and rainfall extremes as indicators of climate variability and change were investigated in the Arid and Semi-Arid Lands (ASALs) of Kenya using in-situ measurements and gridded climate proxy datasets, and analysed using the Gaussian-Kernel analysis and the Mann-Kendall statistics. The results show that the maximum and minimum temperatures have been increasing, with warmer temperatures being experienced mostly at night time. The average change in the mean maximum and minimum seasonal surface air temperature for the region were 0.74°C and 0.60°C, respectively between the 1961-1990 and 1991-2013 periods. Decreasing but statistically insignificant trends in the seasonal rainfall were noted in the area, but with mixed patterns in variability. The March-April-May rainfall season indicated the highest decrease in the seasonal rainfall amounts. The southern parts of the region had a decreasing trend in rainfall that was greater than that of the northern areas. The results of this study are expected to support sustainable pastoralism system prevalent with the local communities in the ASALs.展开更多
Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise ...Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.展开更多
Landscape fragmentation is generally viewed as an indicator of environmental stresses or risks,but the fragmentation intensity assessment also depends on the scale of data and the definition of spatial unit.This study...Landscape fragmentation is generally viewed as an indicator of environmental stresses or risks,but the fragmentation intensity assessment also depends on the scale of data and the definition of spatial unit.This study aimed to explore the scale-dependence of forest fragmentation intensity along a moisture gradient in Yinshan Mountain of North China,and to estimate environmental sensitivity of forest fragmentation in this semi-arid landscape.We developed an automatic classification algorithm using simple linear iterative clustering(SLIC)and Gaussian mixture model(GMM),and extracted tree canopy patches from Google Earth images(GEI),with an accuracy of 89.2%in the study area.Then we convert the tree canopy patches to forest category according to definition of forest that tree density greater than 10%,and compared it with forest categories from global land use datasets,FROM-GLC10 and GlobeLand30,with spatial resolutions of 10 m and 30 m,respectively.We found that the FROM-GLC10 and GlobeLand30 datasets underestimated the forest area in Yinshan Mountain by 16.88%and 21.06%,respectively;and the ratio of open forest(OF,10%<tree coverage<40%)to closed forest(CF,tree coverage>40%)areas in the underestimated part was 2:1.The underestimations concentrated in warmer and drier areas occupied mostly by large coverage of OFs with severely fragmented canopies.Fragmentation intensity of canopies positively correlated with spring temperature while negatively correlated with summer precipitation and terrain slope.When summer precipitation was less than 300 mm or spring temperature higher than 4℃,canopy fragmentation intensity rose drastically,while the forest area percentage kept stable.Our study suggested that the spatial configuration,e.g.,sparseness,is more sensitive to drought stress than area percentage.This highlights the importance of data resolution and proper fragmentation measurements for forest patterns and environmental interpretation,which is the base of reliable ecosystem predictions with regard to the future climate scenarios.展开更多
Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Lan...Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.展开更多
Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River...Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River basin in 2000,2010,and 2020,with the support of Aeronautical Reconnaissance Coverage Geographic Information System(ArcGIS),GeoDa,and other technologies,this study analyzed the spatial-temporal characteristics and driving factors of land use pattern and landscape ecological risk.Results showed that land use structure of the Weihe River basin has changed significantly,with the decrease of cropland and the increase of forest land and construction land.In the past 20 a,cropland has decreased by 7347.70 km2,and cropland was mainly converted into forest land,grassland,and construction land.The fragmentation and dispersion of ecological landscape pattern in the Weihe River basin were improved,and land use pattern became more concentrated.Meanwhile,landscape ecological risk of the Weihe River basin has been improved.Severe landscape ecological risk area decreased by 19,177.87 km2,high landscape ecological risk area decreased by 3904.35 km2,and moderate and low landscape ecological risk areas continued to increase.It is worth noting that landscape ecological risks in the upper reaches of the Weihe River basin are still relatively serious,especially in the contiguous areas of high ecological risk,such as Tianshui,Pingliang,Dingxi areas and some areas of Ningxia Hui Autonomous Region.Landscape ecological risk showed obvious spatial dependence,and high ecological risk area was concentrated.Among the driving factors,population density,precipitation,normalized difference vegetation index(NDVI),and their interactions are the most important factors affecting the landscape ecological risk of the Weihe River basin.The findings significantly contribute to our understanding of the ecological dynamics in the Weihe River basin,providing crucial insights for sustainable management in the region.展开更多
The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are e...The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.展开更多
Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as...Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.展开更多
Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study ...Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study attempts to identify the complex relationships between the dynamics of land use and the role of rainfall in the occurrence of landslides. On the one hand, it uses statistics on landslides compiled from information taken from general news bulletins and, on the other, daily rainfall data obtained from the National Meteorological Department. The study revealed that the Libreville East sector, dominated by Mount Nkol Ogoum, one of Libreville’s most prominent landforms, is affected by a land-use dynamic in which human settlement has been progressing for some thirty years, to the detriment of the original vegetation which, among other things, helped to stabilise the soil on the hillsides and the marshy areas at the foot of the slopes. The result is not only an uncontrolled occupation of the land, but also a major landslide every two years in this part of the city, causing significant loss of life and property. However, an analysis of the time series shows little rainfall variability, marked in particular by a predominance of negative anomalies, and the occurrence of a few exceptional daily rainfall peaks. Similarly, the period from 20 October to 20 November, which receives the most rainfall, also appears to be the most conducive to landslides.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
“宝钢湛江项目”的实施对近十年湛江东海岛的地物分布产生剧烈影响,尤其是工业用地。本文基于2013年、2017年和2021年的陆地卫星8号(Landsat-8)数据对湛江东海岛进行地物分类,研究该区域近十年的用地变化趋势。以2013年数据为参照:采...“宝钢湛江项目”的实施对近十年湛江东海岛的地物分布产生剧烈影响,尤其是工业用地。本文基于2013年、2017年和2021年的陆地卫星8号(Landsat-8)数据对湛江东海岛进行地物分类,研究该区域近十年的用地变化趋势。以2013年数据为参照:采用归一化水体指数(Normalized Difference Water Index,NDWI)模型和谱间关系模型实现水陆分离,比对选择分离效果较优者以提取东海岛岸线;对比最大似然法、神经网络法和支持向量机法3种监督分类方法,选择提取地物效果最优者应用于其余数据。基于Google earth在线地图及无人机实测数据构建验证点集,使用混淆矩阵进行精度评价。结果表明:谱间关系模型的水陆分离效果较优,提取海岛岸线的精确度有明显提升;支持向量机法的分类总体精度和Kappa系数最高,分类结果能较好地反映研究区的真实地物分布;汇总三年数据的分类结果,发现用于发展工业的土地面积增长突出且处于持续增长趋势。谱间关系模型与支持向量机法分别实现了对东海岛岸线和地物类型的准确提取,得出近十年研究区的用地变化趋势,能为研究区的用地规划提供参考。展开更多
This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques...This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques. Landsat images are used to estimate the LULC changes and the MODIS data for LST.The Maximum Likelihood Classification(MLC) method is used, and the LULC is classified into six categories: Agriculture Land, Barren Land, Salt Pan, Sandy Beach, Settlement, and Waterbody. Within the two decades of the present change detection study, upheave in the Settlement area of 49.89% is noticed, and the Agriculture Land is exploited by 20.09%. Salt Pan emits a high LST of 31.57°C, and the Waterbodies are noticed with a low LST of 28.9°C. However, the overall rate of LST decreased by 0.56°C during this period. This study will help policymakers make appropriate planning and management to overcome the impact of LULC and LST in the forthcoming years.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Pan-Third Pole Environment Study for a Green Silk Road (XDA20060303)the Xinjiang Key Research and Development Program (2016B02017-4)+1 种基金the National Nature Science Foundation of China-United Nations Environment Programme (NSFC-UNEP, 41361140361)the ''High-level Talents Project'' (Y871171) of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences
文摘The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the shrinkage of the Aral Sea, widespread desertification, soil salinization, biodiversity loss, frequent sand storms, and many other ecological disasters. This paper is a review article based upon the collection, identification and collation of previous studies of environmental changes and regional developments in Central Asia in the past 30 years. Most recent studies have reached a consensus that the temperature rise in Central Asia is occurring faster than the global average. This warming trend will not only result in a higher evaporation in the basin oases, but also to a significant retreat of glaciers in the mountainous areas. Water is the key to sustainable development in the arid and semi-arid regions in Central Asia. The uneven distribution, over consumption, and pollution of water resources in Central Asia have caused severe water supply problems, which have been affecting regional harmony and development for the past 30 years. The widespread and significant land use changes in the 1990 s could be used to improve our understanding of natural variability and human interaction in the region. There has been a positive trend of trans-border cooperation among the Central Asian countries in recent years. International attention has grown and research projects have been initiated to provide water and ecosystem protection in Central Asia. However, the agreements that have been reached might not be able to deliver practical action in time to prevent severe ecological disasters. Water management should be based on hydrographic borders and ministries should be able to make timely decisions without political intervention. Fully integrated management of water resources, land use and industrial development is essential in Central Asia. The ecological crisis should provide sufficient motivation to reach a consensus on unified water management throughout the region.
文摘Soil organic matter (SOM) is an important term to realize soil productivity and quality that is extremely influential on soil physical, chemical and biological processes;SOM is one of the key soil properties controlling nutrient budgets in agricultural production systems and is an important index of soil productivity. Remote sensing (RS) and Geographic Information System (GIS) techniques were used to assess organic matter in soil and determine the relationship between measures SOM in field and digital data to calculate or obtain the correlation coefficients applied to evaluate the strength and direction of the linear relationships. In this study Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Bare Soil Index (BSI) were used. The results show that the relationship between vegetation indices (NDVI, SAVI) and SOM in whole study area was (R2 = 0.19, p 2 = 0.01, p 2 = 0.13, p 2 = 0.11, p < 0.05), soil organic carbon increases with increasing NDVI and decreasing BSI. NDVI, SAVI and BSI were considered a useful index to detect the spatial distribution of SOM concentrations and mapping using remote sensing data.
文摘Agriculture in arid and semi-arid lands of Kenya is depends on seasonal characteristics of rainfall. This study seeks to distinguish components of regional climate variability, especially El Ni?o Southern Oscillation events and their impact on the growing season normalized difference vegetation index (NDVI). Datasets used were: 1) rainfall (1961-2003) and 2) NDVI (1981-2003). Results indicate that climate variability is persistent in the arid and semi-arid lands of Kenya and continues to affect vegetation condition and consequently crop production. Correlation calculations between seasonal NDVI and rainfall shows that the October-December (OND) growing season is more reliable than March-May (MAM) season. Results show that observed biomass trends are not solely explained by rainfall variability but also changes in land cover and land use. Results show that El Ni?o and La Ni?a events in southeast Kenya vary in magnitude, both in time and space as is their impact on vegetation;and that variation in El Ni?o intensity is higher than during La Ni?a events. It is suggested that farmers should be encouraged to increase use of farm input in their agricultural enterprises during the OND season;particularly when above normal rains are forecast. The close relationship between rainfall and NDVI yield ground for improvement in the prediction of local level rainfall. Effective dissemination of this information to stakeholders will go along way to ameliorate the suffering of many households and enable government to plan ahead of a worse season. This would greatly reduce the vulnerability of livelihoods to climate related disasters by improving their management.
文摘The magnitude and trend of temperature and rainfall extremes as indicators of climate variability and change were investigated in the Arid and Semi-Arid Lands (ASALs) of Kenya using in-situ measurements and gridded climate proxy datasets, and analysed using the Gaussian-Kernel analysis and the Mann-Kendall statistics. The results show that the maximum and minimum temperatures have been increasing, with warmer temperatures being experienced mostly at night time. The average change in the mean maximum and minimum seasonal surface air temperature for the region were 0.74°C and 0.60°C, respectively between the 1961-1990 and 1991-2013 periods. Decreasing but statistically insignificant trends in the seasonal rainfall were noted in the area, but with mixed patterns in variability. The March-April-May rainfall season indicated the highest decrease in the seasonal rainfall amounts. The southern parts of the region had a decreasing trend in rainfall that was greater than that of the northern areas. The results of this study are expected to support sustainable pastoralism system prevalent with the local communities in the ASALs.
文摘Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.
基金the Natural Science Foundation of China(Grant No.41790425).
文摘Landscape fragmentation is generally viewed as an indicator of environmental stresses or risks,but the fragmentation intensity assessment also depends on the scale of data and the definition of spatial unit.This study aimed to explore the scale-dependence of forest fragmentation intensity along a moisture gradient in Yinshan Mountain of North China,and to estimate environmental sensitivity of forest fragmentation in this semi-arid landscape.We developed an automatic classification algorithm using simple linear iterative clustering(SLIC)and Gaussian mixture model(GMM),and extracted tree canopy patches from Google Earth images(GEI),with an accuracy of 89.2%in the study area.Then we convert the tree canopy patches to forest category according to definition of forest that tree density greater than 10%,and compared it with forest categories from global land use datasets,FROM-GLC10 and GlobeLand30,with spatial resolutions of 10 m and 30 m,respectively.We found that the FROM-GLC10 and GlobeLand30 datasets underestimated the forest area in Yinshan Mountain by 16.88%and 21.06%,respectively;and the ratio of open forest(OF,10%<tree coverage<40%)to closed forest(CF,tree coverage>40%)areas in the underestimated part was 2:1.The underestimations concentrated in warmer and drier areas occupied mostly by large coverage of OFs with severely fragmented canopies.Fragmentation intensity of canopies positively correlated with spring temperature while negatively correlated with summer precipitation and terrain slope.When summer precipitation was less than 300 mm or spring temperature higher than 4℃,canopy fragmentation intensity rose drastically,while the forest area percentage kept stable.Our study suggested that the spatial configuration,e.g.,sparseness,is more sensitive to drought stress than area percentage.This highlights the importance of data resolution and proper fragmentation measurements for forest patterns and environmental interpretation,which is the base of reliable ecosystem predictions with regard to the future climate scenarios.
文摘Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.
基金the National Natural Science Foundation of China(31971859)the Doctoral Research Start-up Fund of Northwest A&F University,China(Z1090121109)the Shaanxi Science and Technology Development Plan Project(2023-JC-QN-0197).
文摘Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River basin in 2000,2010,and 2020,with the support of Aeronautical Reconnaissance Coverage Geographic Information System(ArcGIS),GeoDa,and other technologies,this study analyzed the spatial-temporal characteristics and driving factors of land use pattern and landscape ecological risk.Results showed that land use structure of the Weihe River basin has changed significantly,with the decrease of cropland and the increase of forest land and construction land.In the past 20 a,cropland has decreased by 7347.70 km2,and cropland was mainly converted into forest land,grassland,and construction land.The fragmentation and dispersion of ecological landscape pattern in the Weihe River basin were improved,and land use pattern became more concentrated.Meanwhile,landscape ecological risk of the Weihe River basin has been improved.Severe landscape ecological risk area decreased by 19,177.87 km2,high landscape ecological risk area decreased by 3904.35 km2,and moderate and low landscape ecological risk areas continued to increase.It is worth noting that landscape ecological risks in the upper reaches of the Weihe River basin are still relatively serious,especially in the contiguous areas of high ecological risk,such as Tianshui,Pingliang,Dingxi areas and some areas of Ningxia Hui Autonomous Region.Landscape ecological risk showed obvious spatial dependence,and high ecological risk area was concentrated.Among the driving factors,population density,precipitation,normalized difference vegetation index(NDVI),and their interactions are the most important factors affecting the landscape ecological risk of the Weihe River basin.The findings significantly contribute to our understanding of the ecological dynamics in the Weihe River basin,providing crucial insights for sustainable management in the region.
基金supported by the Tianshan Talent Training Plan of Xinjiang,China(2022TSYCLJ0058,2022TSYCCX0001)the National Natural Science Foundation of China(2022D01D83,42377358).
文摘The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.
基金Under the auspices of the National Natural Science Foundation of China(No.42271279,41931293,41801175)。
文摘Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.
文摘Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study attempts to identify the complex relationships between the dynamics of land use and the role of rainfall in the occurrence of landslides. On the one hand, it uses statistics on landslides compiled from information taken from general news bulletins and, on the other, daily rainfall data obtained from the National Meteorological Department. The study revealed that the Libreville East sector, dominated by Mount Nkol Ogoum, one of Libreville’s most prominent landforms, is affected by a land-use dynamic in which human settlement has been progressing for some thirty years, to the detriment of the original vegetation which, among other things, helped to stabilise the soil on the hillsides and the marshy areas at the foot of the slopes. The result is not only an uncontrolled occupation of the land, but also a major landslide every two years in this part of the city, causing significant loss of life and property. However, an analysis of the time series shows little rainfall variability, marked in particular by a predominance of negative anomalies, and the occurrence of a few exceptional daily rainfall peaks. Similarly, the period from 20 October to 20 November, which receives the most rainfall, also appears to be the most conducive to landslides.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
文摘“宝钢湛江项目”的实施对近十年湛江东海岛的地物分布产生剧烈影响,尤其是工业用地。本文基于2013年、2017年和2021年的陆地卫星8号(Landsat-8)数据对湛江东海岛进行地物分类,研究该区域近十年的用地变化趋势。以2013年数据为参照:采用归一化水体指数(Normalized Difference Water Index,NDWI)模型和谱间关系模型实现水陆分离,比对选择分离效果较优者以提取东海岛岸线;对比最大似然法、神经网络法和支持向量机法3种监督分类方法,选择提取地物效果最优者应用于其余数据。基于Google earth在线地图及无人机实测数据构建验证点集,使用混淆矩阵进行精度评价。结果表明:谱间关系模型的水陆分离效果较优,提取海岛岸线的精确度有明显提升;支持向量机法的分类总体精度和Kappa系数最高,分类结果能较好地反映研究区的真实地物分布;汇总三年数据的分类结果,发现用于发展工业的土地面积增长突出且处于持续增长趋势。谱间关系模型与支持向量机法分别实现了对东海岛岸线和地物类型的准确提取,得出近十年研究区的用地变化趋势,能为研究区的用地规划提供参考。
文摘This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques. Landsat images are used to estimate the LULC changes and the MODIS data for LST.The Maximum Likelihood Classification(MLC) method is used, and the LULC is classified into six categories: Agriculture Land, Barren Land, Salt Pan, Sandy Beach, Settlement, and Waterbody. Within the two decades of the present change detection study, upheave in the Settlement area of 49.89% is noticed, and the Agriculture Land is exploited by 20.09%. Salt Pan emits a high LST of 31.57°C, and the Waterbodies are noticed with a low LST of 28.9°C. However, the overall rate of LST decreased by 0.56°C during this period. This study will help policymakers make appropriate planning and management to overcome the impact of LULC and LST in the forthcoming years.