In this paper, we define the topological degree for 1-set-contractive fields in PN spaces. Based on this, we obtain some new fixed point theorems for 1-set-contractive operators. As an application, we study the existe...In this paper, we define the topological degree for 1-set-contractive fields in PN spaces. Based on this, we obtain some new fixed point theorems for 1-set-contractive operators. As an application, we study the existence of solutions for a kind of nonlinear Volterra integral equations in Z-M-PN space.展开更多
In this paper, we study some semi-closed 1-set-contractive operators A and investigate the boundary conditions under which the topological degrees of 1-set contractive fields, deg (I-A, Ω, p) are equal to 1. Correspo...In this paper, we study some semi-closed 1-set-contractive operators A and investigate the boundary conditions under which the topological degrees of 1-set contractive fields, deg (I-A, Ω, p) are equal to 1. Correspondingly, we can obtain some new fixed point theorems for 1-set-contractive operators which extend and improve many famous theorems such as the Leray-Schauder theorem, and operator equation, etc. Lemma 2.1 generalizes the famous theorem. The calculation of topological degrees and index are important things, which combine the existence of solution of for integration and differential equation and or approximation by iteration technique. So, we apply the effective modification of He’s variation iteration method to solve some nonlinear and linear equations are proceed to examine some a class of integral-differential equations, to illustrate the effectiveness and convenience of this method.展开更多
The new concepts of the Z-C-X space and excellent cone are introduced. Some problems of random semiclosed 1-set-contractive operator are investigated in the Z-C-X space. At first, an important inequality is proved. Se...The new concepts of the Z-C-X space and excellent cone are introduced. Some problems of random semiclosed 1-set-contractive operator are investigated in the Z-C-X space. At first, an important inequality is proved. Secondly, several new conclusions are proved by means of random fixed point index in the theory of random topological degree. A random solution of a class of random operator equations under conditions of imitating the parallelogram law is obtained, famous Altman's theorem is generalized in partially ordered Z-C-X space. Therefore, some new results are obtained.展开更多
基金Supported by the National Natural Science Foundation of China (10761007)
文摘In this paper, we define the topological degree for 1-set-contractive fields in PN spaces. Based on this, we obtain some new fixed point theorems for 1-set-contractive operators. As an application, we study the existence of solutions for a kind of nonlinear Volterra integral equations in Z-M-PN space.
文摘In this paper, we study some semi-closed 1-set-contractive operators A and investigate the boundary conditions under which the topological degrees of 1-set contractive fields, deg (I-A, Ω, p) are equal to 1. Correspondingly, we can obtain some new fixed point theorems for 1-set-contractive operators which extend and improve many famous theorems such as the Leray-Schauder theorem, and operator equation, etc. Lemma 2.1 generalizes the famous theorem. The calculation of topological degrees and index are important things, which combine the existence of solution of for integration and differential equation and or approximation by iteration technique. So, we apply the effective modification of He’s variation iteration method to solve some nonlinear and linear equations are proceed to examine some a class of integral-differential equations, to illustrate the effectiveness and convenience of this method.
文摘The new concepts of the Z-C-X space and excellent cone are introduced. Some problems of random semiclosed 1-set-contractive operator are investigated in the Z-C-X space. At first, an important inequality is proved. Secondly, several new conclusions are proved by means of random fixed point index in the theory of random topological degree. A random solution of a class of random operator equations under conditions of imitating the parallelogram law is obtained, famous Altman's theorem is generalized in partially ordered Z-C-X space. Therefore, some new results are obtained.