期刊文献+
共找到51,999篇文章
< 1 2 250 >
每页显示 20 50 100
FROM CRYSTALLINE BLOCK SLIPS TO DOMINANCE OF NETWORK STRETCHING——MECHANISMS OF TENSILE DEFORMATION IN SEMI-CRYSTALLINE POLYMERS 被引量:1
1
作者 Y. Men 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第2期160-170,共10页
The mechanism of tensile deformation in semi-crystalline polymers was studied based on true stress-strain curvesobtained with the aid of a video-controlled tensile set-up. The deformation is affected by both the cryst... The mechanism of tensile deformation in semi-crystalline polymers was studied based on true stress-strain curvesobtained with the aid of a video-controlled tensile set-up. The deformation is affected by both the crystalline and theamorphous phases. However, the relative weights of the two portions change with the deformation stage. At lowdeformations the coupling and coarse slips of the crystalline blocks dominate the mechanical properties, which allows thesystem to maintain a homogeneous strain distribution in the sample. As the stretching increases, at a critical strain the forcegenerated from entangled fluid portions reaches a critical value to destroy the crystallites. The dominant deformationmechanism then changes into a disaggregation - recrystallization process. 展开更多
关键词 semi-crystalline polymer Deformation mechanism NETWORK Mechanical property
下载PDF
A phase-field model for simulating various spherulite morphologies of semi-crystalline polymers 被引量:5
2
作者 王晓东 欧阳洁 +1 位作者 苏进 周文 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期387-393,共7页
A modified phase-field model is proposed for simulating the isothermal crystallization of polymer melts. The model consists of a second-order phase-field equation and a heat conduction equation. It obtains its model p... A modified phase-field model is proposed for simulating the isothermal crystallization of polymer melts. The model consists of a second-order phase-field equation and a heat conduction equation. It obtains its model parameters from the real material parameters and is easy to use with tolerable computational cost. Due to the use of a new free energy functional form, the model can reproduce various single crystal morphologies of polymer melts under quiescent conditions, including dendritic, lamellar branching, ring-banded, breakup of ring-banded, faceted hexagonal, and spherulitic structures. Simulation results of isotactic polystyrene crystals demonstrate that the present phase-field model has the ability to give qualitative predictions of polymer crystallization under isothermal and quiescent conditions. 展开更多
关键词 PHASE-FIELD crystallization polymer DENDRITIC LAMELLAR ring-banded
下载PDF
Fundamental Mechanism of Slow Crack Growth in Semi-Crystalline Polymers under a Constant Load
3
作者 Norman Brown 《Materials Sciences and Applications》 2019年第11期721-731,共11页
The purpose is to quantitatively present in a single equation all the factors that affect the failure time by Slow Crack Growth (SCG) in a semi-crystalline polymer (SCP) under a constant load. The fundamental mechanis... The purpose is to quantitatively present in a single equation all the factors that affect the failure time by Slow Crack Growth (SCG) in a semi-crystalline polymer (SCP) under a constant load. The fundamental mechanism of fracture is displayed at the molecular level. The rate of fracturing is determined by the Eyring theory of thermal activation. The resulting equation includes the important molecular properties of therein, the length and density of the tie molecules. The underlying microfracture process is the unfolding of the chains in the crystal under the action of the tie molecules. 展开更多
关键词 FAILURE semi-crystalline polymer
下载PDF
Thermophysical Characterization and Crystallization Kinetics of Semi-Crystalline Polymers
4
作者 Matthieu Zinet Zakariaa Refaa +2 位作者 M’hamed Boutaous Shihe Xin Patrick Bourgin 《Journal of Modern Physics》 2013年第7期28-37,共10页
Final properties and behavior of polymer parts are known to be directly linked to the thermomechanical history experienced during their processing. Their quality depends on their structure, which is the result of the ... Final properties and behavior of polymer parts are known to be directly linked to the thermomechanical history experienced during their processing. Their quality depends on their structure, which is the result of the interactions between the process and the polymers in terms of thermomechanical kinetics. To study the actual behavior of a polymer during its transformation, it is necessary to take into account all the thermal dependencies of their thermophysical properties. In this paper, a complete experimental thermal characterization of a semi-crystalline polymer is performed. Thermal conductivity is measured using the hot wire method. The PVT diagram is obtained by means of an isobaric piston type dilatometer. Heat capacity is characterized versus temperature by differential scanning calorimetry (DSC). A modification of the Schneider rate crystallization equations is proposed, allowing to identify in a simple way all the crystallization kinetics parameters, using only DSC measurements. Finally, a multiphysical coupled model is built in order to numerically simulate the cooling of a polypropylene plate, as in the cooling stage of the injection molding process. Calculated evolutions of temperature, crystallinity, pressure and specific volume across the plate thickness are presented and commented. 展开更多
关键词 Thermophysical Characterization HEAT TRANSFER CRYSTALLIZATION KINETICS polymer Multiphysical Modeling
下载PDF
Recent advances and innovations in the design and fabrication of wearable flexible biosensors and human health monitoring systems based on conjugated polymers 被引量:1
5
作者 Vinh Van Tran Viet-Duc Phung Daeho Lee 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期476-516,共41页
Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing we... Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability.The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care.Among numerous potential materials,conjugated polymers(CPs)are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties.Recently,CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules.However,fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge,necessitating novel developmental strategies for enhancing the viability of such biosensors.Accordingly,this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors,thereby facilitating future research.Emphasizing the superior properties and benefits of CPs,this review aims to clarify their potential applicability within this field.Furthermore,the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail.The recent advancements in CP nanostructures and hybridizations for improved sensing performance,along with recent innovations in next-generation wearable biosensors are highlighted.CPbased wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring. 展开更多
关键词 Conjugated polymers Wearable biosensors E-skin electronics Implantable biosensors Conductive polymer hydrogels
下载PDF
Synthetic polymers:A review of applications in drilling fluids 被引量:2
6
作者 Shadfar Davoodi Mohammed Al-Shargabi +2 位作者 David A.Wood Valeriy S.Rukavishnikov Konstantin M.Minaev 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期475-518,共44页
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio... With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided. 展开更多
关键词 Synthetic versus natural polymers Nanopolymers Drilling fluid additives LUBRICITY Clay swelling Hole cleaning
下载PDF
Lithium-Ion Charged Polymer Channels Flattening Lithium Metal Anode 被引量:2
7
作者 Haofan Duan Yu You +11 位作者 Gang Wang Xiangze Ou Jin Wen Qiao Huang Pengbo Lyu Yaru Liang Qingyu Li Jianyu Huang Yun‑Xiao Wang Hua‑Kun Liu Shi Xue Dou Wei‑Hong Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期379-393,共15页
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein... The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs. 展开更多
关键词 polymer ionic channel Li metal batteries Artificial protective layer Uniform Li deposition Electrochemical performances
下载PDF
Polymer engineering for electrodes of aqueous zinc ion batteries 被引量:1
8
作者 Zhi Peng Zemin Feng +8 位作者 Xuelian Zhou Siwen Li Xuejing Yin Zekun Zhang Ningning Zhao Zhangxing He Lei Dai Ling Wang Chao Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期345-369,共25页
With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy stor... With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs. 展开更多
关键词 Aqueous zinc ion batteries polymer Multi-function Anode protection Energy storage
下载PDF
Bifunctional TiO_(2-x)nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries 被引量:1
9
作者 Yixin Wu Zhen Chen +6 位作者 Yang Wang Yu Li Chunxing Zhang Yihui Zhu Ziyu Yue Xin Liu Minghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期437-448,I0011,共13页
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L... Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs. 展开更多
关键词 Nanofibers fillers Oxygen vacancies Gel polymer electrolytes Lithium metal batteries
下载PDF
Ultraviolet‑Irradiated All‑Organic Nanocomposites with Polymer Dots for High‑Temperature Capacitive Energy Storage 被引量:1
10
作者 Jiale Ding Yao Zhou +5 位作者 Wenhan Xu Fan Yang Danying Zhao Yunhe Zhang Zhenhua Jiang Qing Wang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期398-406,共9页
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have bee... Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites. 展开更多
关键词 High-temperature energy storage polymer dots Ultraviolet irradiation All-organic composite dielectrics
下载PDF
New Kinetics Equation for Stress Relaxation of Semi-crystalline Polymers below Glass Transition Temperature
11
作者 Cheng Zhang Li-Hai Cai +2 位作者 Bao-Hua Guo Bing Miao Jun Xu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第12期1662-1669,I0010,共9页
The stress relaxation of semi-crystalline nylon 1010 cannot be fitted by the Kohlrausch-Williams-Watts formula when the experiments were performed at pre-yielding regime below the glass transition temperature.We study... The stress relaxation of semi-crystalline nylon 1010 cannot be fitted by the Kohlrausch-Williams-Watts formula when the experiments were performed at pre-yielding regime below the glass transition temperature.We study this problem and identify the two-step mechanism of stress relaxation.At short time scale,relaxation is fast,dominated by stress biased thermal fluctuation with a fixed short-range length scale(activation volume).At long time scale,relaxation is slow due to the emergence of a cooperative long-range length scale determined by the stress fluctuation.The cooperative length scale is proportional to the reciprocal of stress and the amplitude of stress fluctuation is the product of stress and activation volume.Based on this two-step mechanism,we propose a new kinetics equation to capture the stress relaxation effectively,where the short time relaxation is described by an Eyring-like local activation and the long-time relaxation is captured by a cooperative excitation process resorting to an extension from the random first order transition theory.Our equation fits the experimental data well and can serve as a model to guide the related experiments of relaxation processes in crystalline solids. 展开更多
关键词 Stress relaxation semi-crystalline polymers Kohlrausch-Williams-Watts(KWW)equation Random first order transition(RFOT)theory
原文传递
Achieving Synergistic Improvement in Dielectric and Energy Storage Properties of All-Organic Poly(Methyl Methacrylate)-Based Copolymers Via Establishing Charge Traps
12
作者 Guanghu He Huang Luo +5 位作者 Chuanfang Yan Yuting Wan Dang Wu Hang Luo Yuan Liu Sheng Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期308-319,共12页
How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote ... How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote theε_(r)and E_(b)of linear poly(methyl methacrylate)(PMMA)copolymers.The PMMA-based random copolymer films(P(MMA-co-MHT)),block copolymer films(PMMA-b-PMHT),and PMMA-based blend films were prepared to investigate the effects of sequential structure,phase separation structure,and modification method on dielectric and energy storage properties of PMMA-based dielectric films.As a result,the random copolymer P(MMA-coMHT)can achieve a maximumε_(r)of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization.Because electron injection and charge transfer are limited by the strong electrostatic attraction ofπ-conjugated benzophenanthrene group analyzed by the density functional theory(DFT),the discharge energy density value of P(MMA-co-PMHT)containing 1 mol%MHT units with the efficiency of 80%reaches15.00 J cm^(-3)at 872 MV m^(-1),which is 165%higher than that of pure PMMA.This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer. 展开更多
关键词 dielectric capacitor electrical properties energy density polymer dielectric semiconductor polymer
下载PDF
Comprehension-driven design of advanced multi-block single-ion conducting polymer electrolytes for high-performance lithium-metal batteries
13
作者 Xu Dong Dominic Bresser 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期357-359,共3页
The continuously growing importance of batteries for powering(hybrid)electric vehicles and storing renewable energy has prompted a renewed focus on lithium-metal batteries(LMBs)in recent years,as its high theoretical ... The continuously growing importance of batteries for powering(hybrid)electric vehicles and storing renewable energy has prompted a renewed focus on lithium-metal batteries(LMBs)in recent years,as its high theoretical specific capacity of about 3860 mA h g^(-1) and very low redox potential(-3.04 V vs.the standard hydrogen electrode)promise substantially higher energy densities compared to current lithium-ion batteries(LIBs)[1].However,lithium metal electrodes face severe challenges associated with the risk of dendritic lithium deposition and the high reactivity with traditional organic liquid electrolytes,resulting in a continuous loss of electrochemically active lithium and a relatively low Coulombic efficiency[2].To address these challenges,solid inorganic and polymer electrolytes have emerged as a potentially saferalternative. 展开更多
关键词 LITHIUM polymer PROMPT
下载PDF
Influence of Mass Ratio of Resin and Stabilizer on Mechanical Properties of Mo Fiber-reinforced Granite Polymer Composite
14
作者 张超 任秀华 +6 位作者 BA Dongzhe ZHANG Jianhua LI Jianyong GUO Mengnan GAO Yinghao WANG Guixin LI Jiayang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期912-920,共9页
Because inferior mechanical strength of granite polymer composite(GPC)has become the main drawback limiting its application and popularization,Mo fibers were added into(GPC)to improve its mechanical strength.Mechanica... Because inferior mechanical strength of granite polymer composite(GPC)has become the main drawback limiting its application and popularization,Mo fibers were added into(GPC)to improve its mechanical strength.Mechanical properties of matrix materials with different mass ratio of resin and stabilizer(MRRS)were investigated systematically.The influences of MRRS on interface bonding strength of Mo fiber-matrix,wettability and mechanical strength of GPC were discussed,respectively,and the theoretical calculation result of MRRS k was obtained,with the optimal value of k=4.When k=4,tensile strength,tensile strain and fracture stress of the cured resin achieve the maximum values.But for k=7,the corresponding values reach the minimum.With the increase of MRRS k,surface free energy of the cured resin first increases and then decreases,while contact angles between Mo sample and matrix have displayed the opposite trend.Wettability of resin to Mo fiber is the best at k=4.Pulling load of Mo fiber and interface bonding strength appear the maximum at k=4,followed by k=5,k=3 the third,and k=7 the minimum.When k=4,mechanical properties of Mo fiber-reinforced GPC are optimal,which is consistent with the result of theoretical calculation.This study is of great significance to get better component formulas of Mo fiber reinforced GPC and to improve its application in machine tools. 展开更多
关键词 polymer composite FIBER mechanical strength interface bonding
下载PDF
Effect of electron-electron interaction on polarization process of exciton and biexciton in conjugated polymer
15
作者 李晓雪 彭华 +1 位作者 王栋 侯栋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期556-566,共11页
By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-... By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction,we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene.The dynamical simulation is performed by adopting the non-adiabatic evolution approach.The results show that under the effect of moderate electric field,when the strength of electron-electron interaction is weak,the singlet exciton is stable but its polarization presents obvious oscillation.With the enhancement of interaction,it is dissociated into polaron pairs,the spin-flip of which can be observed through modulating the interaction strength.For the triplet exciton,the strong electron-electron interaction restrains its normal polarization,but it is still stable.In the case of biexciton,the strong electron-electron interaction not only dissociate it,but also flip its charge distribution.The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated. 展开更多
关键词 conjugated polymer EXCITON electron-electron interaction reverse polarization
下载PDF
Voltage-modulated polymer nanopore field-effect transistor for multi-sized nanoparticle detection
16
作者 Feng Zhou Lin Li Qiannan Xue 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期79-89,共11页
Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle ... Solid-state nanopores offer a range of distinct advantages over biological nanopores,such as structural diversity and greater stability and durability;this makes them highly promising for high-resolution nanoparticle sensing.Biological nanopores can exhibit gating characteristics with stress-responsive switches and can demonstrate specificity toward particular molecules.Drawing inspiration from biological nanopores,this paper introduces a novel polymer nanopore with field-effect characteristics,leveraging a conductive polymer in its construction to showcase intriguing gating behavior.Notably,in this device,the polymer layer serves as the gate,enabling precise control over the source–drain current response inside and outside the pore by simply adjusting the gate voltage.This unique feature allows fine-tuning of the nanopore’s sensitivity to nanoparticles of varying sizes and facilitates its operation in multiple modes.Experimental results reveal that the developed polymer nanopore field-effect transistor demonstrates remarkable selectivity in detecting nanoparticles of various sizes under different applied voltages.The proposed single device demonstrates the exceptional ability to detect multiple types of nanoparticle,showcasing its immense potential for a wide range of applications in biological-particle analysis and medical diagnostics. 展开更多
关键词 Nanopipette polymer nanopore Voltage modulation Nanoparticle detection
下载PDF
Renewable Polymers in Biomedical Applications:From the Bench to the Market
17
作者 Rauany Cristina Lopes Tamires Nossa +3 位作者 Wilton Rogério Lustri Gabriel Lombardo Maria Inés Errea Eliane Trovatti 《Journal of Renewable Materials》 EI CAS 2024年第4期643-666,共24页
Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contri... Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contributing to the improvement of life quality,mainly in drug release systems and in regenerative medicine.Formulations using natural polymer,nano and microscale particles preparation,composites,blends and chemical modification strategies have been used to improve their properties for clinical application.Although many studies have been carried out with these natural polymers,the way to reach the market is long and only very few of them become commercially available.Vegetable cellulose,bacterial cellulose,chitosan,poly(lactic acid)and starch can be found among the most studied polymers for biological applications,some with several derivatives already established in the market,and others with potential for such.In this scenario this work aims to describe the properties and potential of these renewable polymers for biomedical applications,the routes from the bench to the market,and the perspectives for future developments. 展开更多
关键词 polymerS RENEWABLE biomedical applications MARKET
下载PDF
Erosion control of Chinese loess using polymer SH and ryegrass
18
作者 YING Chunye LI Lanxing +1 位作者 MAKEEN Gehad Mohamed Hossam LIU Yabin 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2043-2058,共16页
The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for... The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China. 展开更多
关键词 Loess Plateau Loess erosion RYEGRASS polymer SH Erosion control MICROSTRUCTURE
下载PDF
Exploring innovative synthetic solutions for advanced polymer-based electrochromic energy storage devices:Phenoxazine as a promising chromophore
19
作者 Catalin-Paul Constantin Mihaela Balan-Porcarasu Gabriela Lisa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期433-452,共20页
The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazo... The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazomethine,and polyamide)were synthesized to ascertain the superior performer.The polyamide exhibited remarkable attributes,including high redox stability during 500 repetitive CVs,optical contrast of 61.98%,rapid response times of 1.02 and 1.38 s for coloring and bleaching,EC efficiency of 280 cm^(2)C^(-1).and decays of the optical density and EC efficiency of only 12.18%and 6.23%after 1000 cycles.Then,the energy storage performance of polyamide PA was tested,for which the following parameters were obtained:74.7 F g^(-1)(CV,scan rate of 10 mV s^(-1))and 118 F g^(-1)(GCD,charging current of 0.1 A g^(-1)).Then,the polyamide was tested in EES devices,which yielded the following EC parameters:an optical contrast of 62.15%,response times of 9.24 and 5.01 s for coloring and bleaching,EC efficiency of 178 cm^(2)C^(-1),and moderate decays of 20.25%and 23.24%for the optical density and EC efficiency after 500 cycles.The energy storage performance included a capacitance of 106 F g^(-1)(CV,scan rate of 0.1 mV s^(-1))and 9.23 F g^(-1)(GCD,charging current of 0.1 A g^(-1)),capacitance decay of 11.9%after500 cycles,and 1.7 V retention after 2 h.Also,two EES devices connected in series powered a 3 V LED for almost 30 s. 展开更多
关键词 polymerS PHENOXAZINE Electrochromic Energy storage Electrochromi cenergy storage devices
下载PDF
A Stable Open-Shell Conjugated Diradical Polymer with Ultra-High Photothermal Conversion Efficiency for NIR-Ⅱ Photo-Immunotherapy of Metastatic Tumor
20
作者 Yijian Gao Ying Liu +7 位作者 Xiliang Li Hui Wang Yuliang Yang Yu Luo Yingpeng Wan Chun‑sing Lee Shengliang Li Xiao‑Hong Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期1-14,共14页
Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safet... Massive efforts have been concentrated on the advance of eminent near-infrared(NIR) photothermal materials(PTMs) in the NIR-Ⅱ window(1000–1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-Ⅱresponsive organic PTMs was explored, and their photothermal conversion efficiencies(PCEs) still remain relatively low. Herein, donor–acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-Ⅱ window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-Ⅱ absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-Ⅱ light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-Ⅱ window, without any side-effect. Moreover, by combining with PD-1 antibody,the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-Ⅱ window, offering a new horizon in developing radical-characteristic NIR-Ⅱ photothermal materials. 展开更多
关键词 NIR-Ⅱconjugated polymer PHOTOTHERMAL RADICAL Nanoparticles Cancer therapy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部