One of the main threats to the sustainability of timber production in naturally managed forests in Ghana is insufficient regeneration of timber tree species. This study assessed regeneration success of a logged forest...One of the main threats to the sustainability of timber production in naturally managed forests in Ghana is insufficient regeneration of timber tree species. This study assessed regeneration success of a logged forest by comparing the species composition, diversity, density, recruitment, mortality, and growth of naturally established seedlings in 160 seedling plot samples of 50 m2 located randomly on main skid trails, secondary skid trails, felled tree gaps and unlogged parts of the same forest. The study was done within a 134-ha compartment in a selectively logged moist semi-deciduous forest in Ghana over a period of 33 months involving four enumerations. Seedlings population was initially dominated by pioneers, but after 33 months, population in all sites was dominated by non-pioneers. Seedling densities showed an increase initially in all the sites after logging, but declined after 10 months. The high seedling densities were driven by four (Albizia zygia, Ceiba pentandra, Celtis mildbraedii and Turreanthus africanus) out of the 37 species that regenerated. All four species exhibited a period of exceptionally high new seedling recruitment in the first 10 months. Diversity differed significantly among disturbance types initially, but after 33 months diversity was lower in the unlogged areas though not significant. Seedling mortality was initially greater in unlogged areas of the forest and growth rates higher in the logged areas. These results show that disturbed areas appear to be suitable sites for the regeneration of timber species following logging, although the long-term fate of trees growing on these areas remains uncertain as growth rates declined with time.展开更多
Climate change affects air temperature, sea levels as well as the soil and its ecosystem. The Guinea Savannah and Semi-deciduous Forest zones of Ghana are characterized by different climatic conditions and vegetative ...Climate change affects air temperature, sea levels as well as the soil and its ecosystem. The Guinea Savannah and Semi-deciduous Forest zones of Ghana are characterized by different climatic conditions and vegetative cover. Annual average temperature has been steadily increasing whilst annual total rainfall has been decreasing in both zones, and this has been causing a southward shift of the Savannah into the Forest zone. Soil organisms provide crucial ecosystem services which are required for sustainable agriculture and food production yet crop cultivation disturbs the soil ecosystem. The harsh conditions associated with the Savannah further expose the soil ecosystem to disturbance and loss of biodiversity which threatens food production and security. Soil nematodes are the most abundant animals in the soil and play a central and critical role in the soil food web complex. Studying the nematode community structure gives a reflection of the status of the entire soil ecosystem. Soil samples were taken from cultivated and natural landscapes in the Guinea Savannah and Semi-deciduous Forest agroecological zones to analyse the nematode community. Results from the study showed the Guinea Savannah zone recording warmer soil temperatures, lower organic matter percentage and lower nematode diversity(Genus Richness) as compared to the Semi-deciduous Forest zone. If the Savannah continues to shift southward, the Forest zone soil ecosystem risks disturbance and loss of biodiversity due to the harsh Savannah conditions. Our findings indicate that prevailing crop cultivation practices also disturb soil ecosystem in the two ecological zones which span across West Africa. A disturbed soil ecosystem endangers the future of food production and food security.展开更多
Shifts in hydrological regimes alter river flow rates and flood pulses, decrease environmental heterogeneity and the floristic-structural complexity of associated plant communities. We tested the hypothesis that droug...Shifts in hydrological regimes alter river flow rates and flood pulses, decrease environmental heterogeneity and the floristic-structural complexity of associated plant communities. We tested the hypothesis that drought events affect plant community composition and structure at a small-scale within a riparian fragment towards a reduction in floristic-structural complexity. The tree community was sampled in three habitats (wet, transitional and dry) and monitored in seven inventories carried out between 1991 and 2018. Hydrological variations were evaluated through annual rainfalls, river flow rates and water level data. The species richness and the detrended correspondence analysis axes were used to characterise the temporal modifications in floristic composition. Community structure was described in terms of biomass: accumulated, growth of survivors, mortality and recruitment. Generalised linear mixed models were fitted to evaluate the effects of time and environment in community. It was concluded that the climate has become drier in recent years due to declining precipitation that has affected flow rates and water levels. The floristic-structural complexity of the study fragment was maintained during the monitoring period. However, prolonged and extreme drought events displayed the potential to impact floristic-structural patterns.展开更多
Background: With the objective of increasing knowledge on biomass and carbon stocks, and thus improving the accuracy of published estimates, the present study explored wood density and carbon concentration of coarse w...Background: With the objective of increasing knowledge on biomass and carbon stocks, and thus improving the accuracy of published estimates, the present study explored wood density and carbon concentration of coarse woody debris (diameter≥10) by decay class in a Seasonal Semi-deciduous Forest (SSF) area in the Atlantic Rain Forest and in a Cerrado sensu-stricto (CSS) area (Brazilian savanna), in Brazil. Two strata were identified in each area and ten sampling units were systematic located in each stratum. Data were collected according to the line intersect sampling method. Each tallied element, the diameter, length, and perpendicular width were recorded at the transect intersection point. Each element was classified into a decay class, and the species was identified when possible. Sample discs were cut from each element, from which cylindrical samples were extracted and oven-dried to determine density. These cylinders were milled and analyzed using a LECO-C632 to determine carbon concentration as percentage of mass. Results: In both areas, wood density decreased as the decay class increased. For SSF the mean carbon concentration of all analyzed samples was 49.8% with a standard deviation of 3.3, with a range of 27.9–57.0% across 506 observations. For CSS the general mean was 49.6% with a standard deviation of 2.6, with a range of 31.2–54.5% over 182 observations. Carbon concentration barely change between decay classes. Carbon stock was estimated at 3.3 and 0.7 MgC/ha for the SSF and the CSS, respectively. Similar results were obtained when using a 50% conversion constant. Conclusions: The present study concludes that wood density decreases as the woody debris becomes more decomposed, a pattern found in many previous studies. The carbon concentration, however, barely changes between decay classes, and that result is consistent with most of the literature reviewed. Our carbon concentrations are very close to the 50% used most commonly as a conversion factor. We strongly recommend that future studies of CWD evaluate wood density and carbon concentration by decay class to address the uncertainty still found in the literature.展开更多
Background:Fragmentation and deforestation are one of the greatest threats to forests,and these processes are of even more concern in the tropics,where the seasonal dry forest is possibly one of the most threatened ec...Background:Fragmentation and deforestation are one of the greatest threats to forests,and these processes are of even more concern in the tropics,where the seasonal dry forest is possibly one of the most threatened ecosystems with the least remaining surface area.Methods:The deforestation and fragmentation patterns that had occurred in Ecuadorian seasonal dry forests between 1990 and 2018 were verified,while geographic information systems and land cover shapes provided by the Ecuadorian Ministry of the Environment were employed to classify and evaluate three types of seasonal dry forests:deciduous,semi-deciduous,and transition.The study area was tessellated into 10 km2 hexagons,in which six fragmentation parameters were measured:number of patches,mean patch size,median patch size,total edge,edge density and reticular fragmentation index(RFI).The RFI was also measured both outside and inside protected natural areas(unprotected,national protected areas and protected forest).Moreover,the areas with the best and worst conservation status,connectivity and risk of disappearance values were identified by means of a Getis-Ord Gi*statistical analysis.Results:The deforestation of seasonal dry forests affected 27.04%of the original surface area still remaining in 1990,with an annual deforestation rate of−1.12%between 1990 and 2018.The RFI has increased by 11.61%as a result of the fact that small fragments of forest have tended to disappear,while the large fragments have been fragmented into smaller ones.The semi-deciduous forest had the highest levels of fragmentation in 2018.The three categories of protection had significantly different levels of fragmentation,with lower RFI values in national protected areas and greater values in protected forests.Conclusions:The seasonal dry forest is fragmenting,deforesting and disappearing in some areas.An increased protection and conservation of the Ecuadorian seasonal dry forest is,therefore,necessary owing to the fact that not all protection measures have been effective.展开更多
文摘One of the main threats to the sustainability of timber production in naturally managed forests in Ghana is insufficient regeneration of timber tree species. This study assessed regeneration success of a logged forest by comparing the species composition, diversity, density, recruitment, mortality, and growth of naturally established seedlings in 160 seedling plot samples of 50 m2 located randomly on main skid trails, secondary skid trails, felled tree gaps and unlogged parts of the same forest. The study was done within a 134-ha compartment in a selectively logged moist semi-deciduous forest in Ghana over a period of 33 months involving four enumerations. Seedlings population was initially dominated by pioneers, but after 33 months, population in all sites was dominated by non-pioneers. Seedling densities showed an increase initially in all the sites after logging, but declined after 10 months. The high seedling densities were driven by four (Albizia zygia, Ceiba pentandra, Celtis mildbraedii and Turreanthus africanus) out of the 37 species that regenerated. All four species exhibited a period of exceptionally high new seedling recruitment in the first 10 months. Diversity differed significantly among disturbance types initially, but after 33 months diversity was lower in the unlogged areas though not significant. Seedling mortality was initially greater in unlogged areas of the forest and growth rates higher in the logged areas. These results show that disturbed areas appear to be suitable sites for the regeneration of timber species following logging, although the long-term fate of trees growing on these areas remains uncertain as growth rates declined with time.
基金the Howard G. Buffett Foundation (Subagreement No. RC101172-KNUST), USA for funding this research
文摘Climate change affects air temperature, sea levels as well as the soil and its ecosystem. The Guinea Savannah and Semi-deciduous Forest zones of Ghana are characterized by different climatic conditions and vegetative cover. Annual average temperature has been steadily increasing whilst annual total rainfall has been decreasing in both zones, and this has been causing a southward shift of the Savannah into the Forest zone. Soil organisms provide crucial ecosystem services which are required for sustainable agriculture and food production yet crop cultivation disturbs the soil ecosystem. The harsh conditions associated with the Savannah further expose the soil ecosystem to disturbance and loss of biodiversity which threatens food production and security. Soil nematodes are the most abundant animals in the soil and play a central and critical role in the soil food web complex. Studying the nematode community structure gives a reflection of the status of the entire soil ecosystem. Soil samples were taken from cultivated and natural landscapes in the Guinea Savannah and Semi-deciduous Forest agroecological zones to analyse the nematode community. Results from the study showed the Guinea Savannah zone recording warmer soil temperatures, lower organic matter percentage and lower nematode diversity(Genus Richness) as compared to the Semi-deciduous Forest zone. If the Savannah continues to shift southward, the Forest zone soil ecosystem risks disturbance and loss of biodiversity due to the harsh Savannah conditions. Our findings indicate that prevailing crop cultivation practices also disturb soil ecosystem in the two ecological zones which span across West Africa. A disturbed soil ecosystem endangers the future of food production and food security.
基金supported by the CAPES(Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,Coordination for the Improvement of Higher Education Personnel)CNPq(Conselho Nacional de Desenvolvimento Científi co e Tecnológico,National Council for Scientifi c and Technological Development)+1 种基金FAPEMIG(Fundação de Amparo à Pesquisa do Estado de Minas Gerais,Foundation for Supporting Research of the State of Minas Gerais)scholarship grant of the Federal University of Lavras(Universidade Federal de Lavras).
文摘Shifts in hydrological regimes alter river flow rates and flood pulses, decrease environmental heterogeneity and the floristic-structural complexity of associated plant communities. We tested the hypothesis that drought events affect plant community composition and structure at a small-scale within a riparian fragment towards a reduction in floristic-structural complexity. The tree community was sampled in three habitats (wet, transitional and dry) and monitored in seven inventories carried out between 1991 and 2018. Hydrological variations were evaluated through annual rainfalls, river flow rates and water level data. The species richness and the detrended correspondence analysis axes were used to characterise the temporal modifications in floristic composition. Community structure was described in terms of biomass: accumulated, growth of survivors, mortality and recruitment. Generalised linear mixed models were fitted to evaluate the effects of time and environment in community. It was concluded that the climate has become drier in recent years due to declining precipitation that has affected flow rates and water levels. The floristic-structural complexity of the study fragment was maintained during the monitoring period. However, prolonged and extreme drought events displayed the potential to impact floristic-structural patterns.
基金funded by the Sao Paulo Research Foundation(FAPESP)through a doctorate scholarship(Grant no.2013/10922-2)Research Internship Abroad(Grant no.2014/14213-9)
文摘Background: With the objective of increasing knowledge on biomass and carbon stocks, and thus improving the accuracy of published estimates, the present study explored wood density and carbon concentration of coarse woody debris (diameter≥10) by decay class in a Seasonal Semi-deciduous Forest (SSF) area in the Atlantic Rain Forest and in a Cerrado sensu-stricto (CSS) area (Brazilian savanna), in Brazil. Two strata were identified in each area and ten sampling units were systematic located in each stratum. Data were collected according to the line intersect sampling method. Each tallied element, the diameter, length, and perpendicular width were recorded at the transect intersection point. Each element was classified into a decay class, and the species was identified when possible. Sample discs were cut from each element, from which cylindrical samples were extracted and oven-dried to determine density. These cylinders were milled and analyzed using a LECO-C632 to determine carbon concentration as percentage of mass. Results: In both areas, wood density decreased as the decay class increased. For SSF the mean carbon concentration of all analyzed samples was 49.8% with a standard deviation of 3.3, with a range of 27.9–57.0% across 506 observations. For CSS the general mean was 49.6% with a standard deviation of 2.6, with a range of 31.2–54.5% over 182 observations. Carbon concentration barely change between decay classes. Carbon stock was estimated at 3.3 and 0.7 MgC/ha for the SSF and the CSS, respectively. Similar results were obtained when using a 50% conversion constant. Conclusions: The present study concludes that wood density decreases as the woody debris becomes more decomposed, a pattern found in many previous studies. The carbon concentration, however, barely changes between decay classes, and that result is consistent with most of the literature reviewed. Our carbon concentrations are very close to the 50% used most commonly as a conversion factor. We strongly recommend that future studies of CWD evaluate wood density and carbon concentration by decay class to address the uncertainty still found in the literature.
基金supported by the European Regional Development Fund(ERDF)and the Consejería de Transformación Económica,Industria,Conocimiento y Universidades(project reference:1264483-R)Rafael M Navarro Cerrillo is particularly grateful for the support of the ISOPINE(UCO-1265298)ESPECTRAMED(CGL2017–86161-R)projects.
文摘Background:Fragmentation and deforestation are one of the greatest threats to forests,and these processes are of even more concern in the tropics,where the seasonal dry forest is possibly one of the most threatened ecosystems with the least remaining surface area.Methods:The deforestation and fragmentation patterns that had occurred in Ecuadorian seasonal dry forests between 1990 and 2018 were verified,while geographic information systems and land cover shapes provided by the Ecuadorian Ministry of the Environment were employed to classify and evaluate three types of seasonal dry forests:deciduous,semi-deciduous,and transition.The study area was tessellated into 10 km2 hexagons,in which six fragmentation parameters were measured:number of patches,mean patch size,median patch size,total edge,edge density and reticular fragmentation index(RFI).The RFI was also measured both outside and inside protected natural areas(unprotected,national protected areas and protected forest).Moreover,the areas with the best and worst conservation status,connectivity and risk of disappearance values were identified by means of a Getis-Ord Gi*statistical analysis.Results:The deforestation of seasonal dry forests affected 27.04%of the original surface area still remaining in 1990,with an annual deforestation rate of−1.12%between 1990 and 2018.The RFI has increased by 11.61%as a result of the fact that small fragments of forest have tended to disappear,while the large fragments have been fragmented into smaller ones.The semi-deciduous forest had the highest levels of fragmentation in 2018.The three categories of protection had significantly different levels of fragmentation,with lower RFI values in national protected areas and greater values in protected forests.Conclusions:The seasonal dry forest is fragmenting,deforesting and disappearing in some areas.An increased protection and conservation of the Ecuadorian seasonal dry forest is,therefore,necessary owing to the fact that not all protection measures have been effective.