期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
The Direct Sum Decomposition of Type G_2 Lie Algebra
1
作者 Zhu Xiao-yuan Hao Hong-hua +1 位作者 Xin Bin Du Xian-kun 《Communications in Mathematical Research》 CSCD 2019年第1期10-20,共11页
This article mainly discusses the direct sum decomposition of type G_2 Lie algebra, which, under such decomposition, is decomposed into a type A_1 simple Lie algebra and one of its modules. Four theorems are given to ... This article mainly discusses the direct sum decomposition of type G_2 Lie algebra, which, under such decomposition, is decomposed into a type A_1 simple Lie algebra and one of its modules. Four theorems are given to describe this module,which could be the direct sum of two or three irreducible modules, or the direct sum of weight modules and trivial modules, or the highest weight module. 展开更多
关键词 SIMPLE lie algebra G2 SIMPLE lie algebra A1 direct sum DECOMPOSITION the highest weight module
下载PDF
Higher-Dimensional Lie Algebra and New Integrable Coupling of Discrete KdV Equation
2
作者 李欣越 宋宏伟 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第7期7-15,共9页
Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is de... Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is derived from a new discrete six-by-six matrix spectral problem. Moreover, the Hamiltonian forms is deduced for lattice equation in the resulting hierarchy by means of the discrete variational identity -- a generalized trace identity. A strong symmetry operator of the resulting hierarchy is given. Finally, we prove that the hierarchy of the resulting Hamiltonian equations is Liouville integrable discrete Hamiltonian systems. 展开更多
关键词 semi-direct sums of lie subalgebra integrable couplings discrete variational identity Liouvilleintegrability
下载PDF
一类Lie代数所决定的Lie-Poisson结构的秩的计算
3
作者 刘宝康 《首都师范大学学报(自然科学版)》 2002年第3期6-11,共6页
若实Lie代数 (g ,[,])是其子代数g1 ,… ,gn 的直和 ,各gi 是有限维的 ,本文利用gi 的结构常数给出了g决定的g 上的Lie Poisson结构的秩的计算方法 .最后 ,我们给出用该计算方法计算秩的几个实例 .
关键词 lie-POISSON结构 lie代数 子代数 直和 计算方法 Poisson同构 POISSON流形
下载PDF
Discrete integrable couplings associated with modified Korteweg-de Vries lattice and two hierarchies of discrete soliton equations 被引量:1
4
作者 董焕河 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第5期1177-1181,共5页
A direct way to construct integrable couplings for discrete systems is presented by use of two semi-direct sum Lie algebras. As their applications, the discrete integrable couplings associated with modified Korteweg-d... A direct way to construct integrable couplings for discrete systems is presented by use of two semi-direct sum Lie algebras. As their applications, the discrete integrable couplings associated with modified Korteweg-de Vries (m-KdV) lattice and two hierarchies of discrete soliton equations are developed. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards the complete classification of integrable couplings. 展开更多
关键词 discrete integrable system m-KdV lattice equation semi-direct sums of lie algebras
下载PDF
AKNS孤子族对应系统的哈密尔顿双可积耦合
5
作者 王蕾 唐亚宁 《应用数学》 CSCD 北大核心 2022年第4期827-834,共8页
基于半直和李代数的零曲率方程,应用一族非半单矩阵李代数构建的块矩阵构建了AKNS孤子族对应系统的双可积耦合及其哈密尔顿结构.
关键词 半直和李代数 零曲率方程 双可积耦合 哈密尔顿结构
下载PDF
Laurent多项式环的导子李代数的一个直和的模的导子
6
作者 姜景连 《武夷学院学报》 2011年第5期1-3,共3页
记DerA为Laurent多项式环A的导子李代数,本文讨论直和A⊕DerA到其Larsson模Fa(V(λ,b))的导子。
关键词 Laurent多项式环 李代数 导子 直和
下载PDF
Hamiltonian Forms for a Hierarchy of Discrete Integrable Coupling Systems
7
作者 XU Xi-Xiang YANG Hong-Xiang LU Rong-Wu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第12期1269-1275,共7页
A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedi... A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems. 展开更多
关键词 integrable lattice equation semi-direct sum of lie algebra integrable coupling system discrete variational identity Hamiltonian form Liouville integrability
下载PDF
INTEGRABLE COUPLINGS OF THE TB HIERARCHY AND ITS HAMILTONIAN STRUCTURE 被引量:1
8
作者 Zhang Yu Dong Huanhe (College of Information Science and Engineering,Shandong University of Science and Technology,Qingdao 266510,Shandong) Li Zhu (College of Math.and Inform.Science,Xinyang Normal University,Xinyang 464000,Henan) 《Annals of Differential Equations》 2008年第1期112-116,共5页
In this paper,we obtain integrable couplings of the TB hierarchy using the new subalgebra of the loop algebra A.Then the Hamiltonian structure of the above system is given by the quadratic-form identity.
关键词 semi-direct sums of lie algebras the TB hierarchy-integrable couplings quadratic-form identity Hamiltonian structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部