Numerical diffusion and oscillatory behavior characteristics are averted applying numerical solutions of advection-diffusion equation are themselves immensely sophisticated. In this paper, two numerical methods have b...Numerical diffusion and oscillatory behavior characteristics are averted applying numerical solutions of advection-diffusion equation are themselves immensely sophisticated. In this paper, two numerical methods have been used to solve the advection diffusion equation. We use an explicit finite difference scheme for the advection diffusion equation and semi-discretization on the spatial variable for advection-diffusion equation yields a system of ordinary differential equations solved by Euler’s method. Numerical assessment has been executed with specified initial and boundary conditions, for which the exact solution is known. We compare the solutions of the advection diffusion equation as well as error analysis for both schemes.展开更多
This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model.The spatial discretization uses piecewise polynomials of degree k(k≥1)for t...This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model.The spatial discretization uses piecewise polynomials of degree k(k≥1)for the stress approximation,degree k+1 for the velocity approximation,and degree k for the numerical trace of velocity on the inter-element boundaries.The temporal discretization in the fully discrete method adopts a backward Euler difference scheme.We show the existence and uniqueness of the semi-discrete and fully discrete solutions,and derive optimal a priori error estimates.Numerical examples are provided to support the theoretical analysis.展开更多
A numerical two-dimensional shallow water method was based on method for solving the equations was presented. This the third-order genuinely multidimensional semi-discrete central scheme for spatial discretization an...A numerical two-dimensional shallow water method was based on method for solving the equations was presented. This the third-order genuinely multidimensional semi-discrete central scheme for spatial discretization and the optimal third-order Strong Stability Preserving (SSP) Runge-Kutta method for time integration. The third-order compact Central Weighted Essentially Non-Oscillatory (CWENO) reconstruction was adopted to guarantee the non-oscillatory behavior of the presented scheme and improve the resolution. Two kinds of source terms were considered in this work. They were evaluated using different approaches. The resulting scheme does not require Riemann solvers or characteristic decomposition, hence it retains all the attractive features of central schemes such as simplicity and high resolution. To evaluate the performance of the presented scheme, several numerical examples were tested. The results demonstrate that our method is efficient, stable and robust.展开更多
A nonconforming mixed finite element method for nonlinear hyperbolic equations is discussed. Existence and uniqueness of the solution to the discrete problem are proved. Priori estimates of optimal order are derived f...A nonconforming mixed finite element method for nonlinear hyperbolic equations is discussed. Existence and uniqueness of the solution to the discrete problem are proved. Priori estimates of optimal order are derived for both the displacement and the stress.展开更多
In this paper,we present a third-order central weighted essentially nonoscillatory(CWENO)reconstruction for computations of hyperbolic conservation laws in three space dimensions.Simultaneously,as a Godunov-type centr...In this paper,we present a third-order central weighted essentially nonoscillatory(CWENO)reconstruction for computations of hyperbolic conservation laws in three space dimensions.Simultaneously,as a Godunov-type central scheme,the CWENOtype central-upwind scheme,i.e.,the semi-discrete central-upwind scheme based on our third-order CWENO reconstruction,is developed straightforwardly to solve 3D systems by the so-called componentwise and dimensional-by-dimensional technologies.The high resolution,the efficiency and the nonoscillatory property of the scheme can be verified by solving several numerical experiments.展开更多
This article aims to study the unconditional superconvergent behavior of nonconforming quadrilateral quasi-Wilson element for nonlinear Benjamin Bona Mahoney(BBM)equation.For the generalized rectangular meshes includi...This article aims to study the unconditional superconvergent behavior of nonconforming quadrilateral quasi-Wilson element for nonlinear Benjamin Bona Mahoney(BBM)equation.For the generalized rectangular meshes including rectangular mesh,deformed rectangular mesh and piecewise deformed rectangular mesh,by use of the special character of this element,that is,the conforming part(bilinear element)has high accuracy estimates on the generalized rectangular meshes and the consistency error can reach order O(h^(2)),one order higher than its interpolation error,the superconvergent estimates with respect to mesh size h are obtained in the broken H^(1)-norm for the semi-/fully-discrete schemes.A striking ingredient is that the restrictions between mesh size h and time stepτrequired in the previous works are removed.Finally,some numerical results are provided to confirm the theoretical analysis.展开更多
In this paper, nonconforming quasi-Wilson finite element approximation to a class of nonlinear sine-Gordan equations is discussed. Based on the known higher accuracy results of bilinear element and different technique...In this paper, nonconforming quasi-Wilson finite element approximation to a class of nonlinear sine-Gordan equations is discussed. Based on the known higher accuracy results of bilinear element and different techniques from the existing literature, it is proved that the inner product △↓(u - Ih^1u), △↓vh) and the consistency error can be estimated as order O(h^2) in broken H^1 - norm/L^2 - norm when u ∈ H^3(Ω)/H^4(Ω), where Ih^1u is the bilinear interpolation of u, Vh belongs to the quasi-Wilson finite element space. At the same time, the superclose result with order O(h^2) for semi-discrete scheme under generalized rectangular meshes is derived. Furthermore, a fully-discrete scheme is proposed and the corresponding error estimate of order O(h^2 + τ^2) is obtained for the rectangular partition when u ∈ H^4(Ω), which is as same as that of the bilinear element with ADI scheme and one order higher than that of the usual analysis on nonconforming finite elements.展开更多
EQrot nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, t...EQrot nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, the consistency error of this element is of order O(h2) one order higher than its interpolation error O(h), the superclose results of order O(h2) in broken Hi-norm are obtained. At the same time, the global superconvergence in broken Hi-norm is deduced by interpolation postprocessing technique. Moreover, the extrapolation result with order O(h4) is derived by constructing a new interpolation postprocessing operator and extrapolation scheme based on the known asymptotic expansion formulas of EQrot element. Finally, optimal error estimate is gained for a proposed fully-discrete scheme by different approaches from the previous literature.展开更多
The lowest order H1-Galerkin mixed finite element method (for short MFEM) is proposed for a class of nonlinear sine-Gordon equations with the simplest bilinear rectangular element and zero order Raviart- Thomas elem...The lowest order H1-Galerkin mixed finite element method (for short MFEM) is proposed for a class of nonlinear sine-Gordon equations with the simplest bilinear rectangular element and zero order Raviart- Thomas element. Base on the interpolation operator instead of the traditional Ritz projection operator which is an indispensable tool in the traditional FEM analysis, together with mean-value technique and high accuracy analysis, the superclose properties of order O(h2)/O(h2 + r2) in Hi-norm and H(div; Ω)-norm axe deduced for the semi-discrete and the fully-discrete schemes, where h, r- denote the mesh size and the time step, respectively, which improve the results in the previous literature.展开更多
H1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type.By use of the typical characteristic of the elements,we obtain that the Galerkin mixed approximat...H1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type.By use of the typical characteristic of the elements,we obtain that the Galerkin mixed approximations have the same rates of convergence as in the classical mixed method,but without LBB stability condition.展开更多
We consider the drift-diffusion (DD) model of one dimensional semiconductor devices, which is a system involving not only first derivative convection terms but also second derivative diffusion terms and a coupled Po...We consider the drift-diffusion (DD) model of one dimensional semiconductor devices, which is a system involving not only first derivative convection terms but also second derivative diffusion terms and a coupled Poisson potential equation. Optimal error estimates are obtained for both the semi-discrete and fully discrete local discontinuous Galerkin (LDG) schemes with smooth solutions. In the fully discrete scheme, we couple the implicit-explicit (IMEX) time discretization with the LDG spatial diseretization, in order to allow larger time steps and to save computational cost. The main technical difficulty in the analysis is to treat the inter-element jump terms which arise from the discontinuous nature of the numerical method and the nonlinearity and coupling of the models. A simulation is also performed to validate the analysis.展开更多
Aerosol modelling is very important to study and simulate the behavior of aerosol dynamics in atmospheric environment.In this paper,we consider the general nonlinear aerosol dynamic equations which describe the evolut...Aerosol modelling is very important to study and simulate the behavior of aerosol dynamics in atmospheric environment.In this paper,we consider the general nonlinear aerosol dynamic equations which describe the evolution of the aerosol distribution.Continuous time and discrete time wavelet Galerkin methods are proposed for solving this problem.By using the Schauder’s fixed point theorem and the variational technique,the global existence and uniqueness of solution of continuous time wavelet numerical methods are established for the nonlinear aerosol dynamics with sufficiently smooth initial conditions.Optimal error estimates are obtained for both continuous and discrete time wavelet Galerkin schemes.Numerical examples are given to show the efficiency of the wavelet technique.展开更多
文摘Numerical diffusion and oscillatory behavior characteristics are averted applying numerical solutions of advection-diffusion equation are themselves immensely sophisticated. In this paper, two numerical methods have been used to solve the advection diffusion equation. We use an explicit finite difference scheme for the advection diffusion equation and semi-discretization on the spatial variable for advection-diffusion equation yields a system of ordinary differential equations solved by Euler’s method. Numerical assessment has been executed with specified initial and boundary conditions, for which the exact solution is known. We compare the solutions of the advection diffusion equation as well as error analysis for both schemes.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12171340).
文摘This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model.The spatial discretization uses piecewise polynomials of degree k(k≥1)for the stress approximation,degree k+1 for the velocity approximation,and degree k for the numerical trace of velocity on the inter-element boundaries.The temporal discretization in the fully discrete method adopts a backward Euler difference scheme.We show the existence and uniqueness of the semi-discrete and fully discrete solutions,and derive optimal a priori error estimates.Numerical examples are provided to support the theoretical analysis.
基金Project supported by the National Natural Science Foundation of China (Grant No: 60134010).
文摘A numerical two-dimensional shallow water method was based on method for solving the equations was presented. This the third-order genuinely multidimensional semi-discrete central scheme for spatial discretization and the optimal third-order Strong Stability Preserving (SSP) Runge-Kutta method for time integration. The third-order compact Central Weighted Essentially Non-Oscillatory (CWENO) reconstruction was adopted to guarantee the non-oscillatory behavior of the presented scheme and improve the resolution. Two kinds of source terms were considered in this work. They were evaluated using different approaches. The resulting scheme does not require Riemann solvers or characteristic decomposition, hence it retains all the attractive features of central schemes such as simplicity and high resolution. To evaluate the performance of the presented scheme, several numerical examples were tested. The results demonstrate that our method is efficient, stable and robust.
文摘A nonconforming mixed finite element method for nonlinear hyperbolic equations is discussed. Existence and uniqueness of the solution to the discrete problem are proved. Priori estimates of optimal order are derived for both the displacement and the stress.
基金supported by the National Natural Science Foundation of China(Grant Nos.11101333,11071196,11171043)the National Natural Science Foundation of Shaanxi(Grant No.2011GQ1018)NPU Foundation for Fundamental Research.
文摘In this paper,we present a third-order central weighted essentially nonoscillatory(CWENO)reconstruction for computations of hyperbolic conservation laws in three space dimensions.Simultaneously,as a Godunov-type central scheme,the CWENOtype central-upwind scheme,i.e.,the semi-discrete central-upwind scheme based on our third-order CWENO reconstruction,is developed straightforwardly to solve 3D systems by the so-called componentwise and dimensional-by-dimensional technologies.The high resolution,the efficiency and the nonoscillatory property of the scheme can be verified by solving several numerical experiments.
基金supported by the National Natural Science Foundation of China(No.11671105).
文摘This article aims to study the unconditional superconvergent behavior of nonconforming quadrilateral quasi-Wilson element for nonlinear Benjamin Bona Mahoney(BBM)equation.For the generalized rectangular meshes including rectangular mesh,deformed rectangular mesh and piecewise deformed rectangular mesh,by use of the special character of this element,that is,the conforming part(bilinear element)has high accuracy estimates on the generalized rectangular meshes and the consistency error can reach order O(h^(2)),one order higher than its interpolation error,the superconvergent estimates with respect to mesh size h are obtained in the broken H^(1)-norm for the semi-/fully-discrete schemes.A striking ingredient is that the restrictions between mesh size h and time stepτrequired in the previous works are removed.Finally,some numerical results are provided to confirm the theoretical analysis.
文摘In this paper, nonconforming quasi-Wilson finite element approximation to a class of nonlinear sine-Gordan equations is discussed. Based on the known higher accuracy results of bilinear element and different techniques from the existing literature, it is proved that the inner product △↓(u - Ih^1u), △↓vh) and the consistency error can be estimated as order O(h^2) in broken H^1 - norm/L^2 - norm when u ∈ H^3(Ω)/H^4(Ω), where Ih^1u is the bilinear interpolation of u, Vh belongs to the quasi-Wilson finite element space. At the same time, the superclose result with order O(h^2) for semi-discrete scheme under generalized rectangular meshes is derived. Furthermore, a fully-discrete scheme is proposed and the corresponding error estimate of order O(h^2 + τ^2) is obtained for the rectangular partition when u ∈ H^4(Ω), which is as same as that of the bilinear element with ADI scheme and one order higher than that of the usual analysis on nonconforming finite elements.
基金Supported by the National Natural Science Foundation of China (Nos. 10971203 11101381)+3 种基金Tianyuan Mathe-matics Foundation of National Natural Science Foundation of China (No. 11026154)Natural Science Foundation of Henan Province (No. 112300410026)Natural Science Foundation of the Education Department of Henan Province (Nos. 2011A110020 12A110021)
文摘EQrot nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, the consistency error of this element is of order O(h2) one order higher than its interpolation error O(h), the superclose results of order O(h2) in broken Hi-norm are obtained. At the same time, the global superconvergence in broken Hi-norm is deduced by interpolation postprocessing technique. Moreover, the extrapolation result with order O(h4) is derived by constructing a new interpolation postprocessing operator and extrapolation scheme based on the known asymptotic expansion formulas of EQrot element. Finally, optimal error estimate is gained for a proposed fully-discrete scheme by different approaches from the previous literature.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.11671369,11271340the Natural Science Foundation of the Education Department of Henan Province under Grant Nos.14A110009,16A110022
文摘The lowest order H1-Galerkin mixed finite element method (for short MFEM) is proposed for a class of nonlinear sine-Gordon equations with the simplest bilinear rectangular element and zero order Raviart- Thomas element. Base on the interpolation operator instead of the traditional Ritz projection operator which is an indispensable tool in the traditional FEM analysis, together with mean-value technique and high accuracy analysis, the superclose properties of order O(h2)/O(h2 + r2) in Hi-norm and H(div; Ω)-norm axe deduced for the semi-discrete and the fully-discrete schemes, where h, r- denote the mesh size and the time step, respectively, which improve the results in the previous literature.
基金Foundation item: the National Natural Science Foundation of China (Nos. 10671184 10371113).
文摘H1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type.By use of the typical characteristic of the elements,we obtain that the Galerkin mixed approximations have the same rates of convergence as in the classical mixed method,but without LBB stability condition.
基金supported by National Natural Science Foundation of China(Grant No.11471194)Department of Energy of USA(Grant No.DE-FG02-08ER25863)National Science Foundation of USA(Grant No.DMS-1418750)
文摘We consider the drift-diffusion (DD) model of one dimensional semiconductor devices, which is a system involving not only first derivative convection terms but also second derivative diffusion terms and a coupled Poisson potential equation. Optimal error estimates are obtained for both the semi-discrete and fully discrete local discontinuous Galerkin (LDG) schemes with smooth solutions. In the fully discrete scheme, we couple the implicit-explicit (IMEX) time discretization with the LDG spatial diseretization, in order to allow larger time steps and to save computational cost. The main technical difficulty in the analysis is to treat the inter-element jump terms which arise from the discontinuous nature of the numerical method and the nonlinearity and coupling of the models. A simulation is also performed to validate the analysis.
基金This work was supported partly by National Engineering and Science Research Council of Canada and by Canadian Foundation for Climate and Atmospheric Sciences.
文摘Aerosol modelling is very important to study and simulate the behavior of aerosol dynamics in atmospheric environment.In this paper,we consider the general nonlinear aerosol dynamic equations which describe the evolution of the aerosol distribution.Continuous time and discrete time wavelet Galerkin methods are proposed for solving this problem.By using the Schauder’s fixed point theorem and the variational technique,the global existence and uniqueness of solution of continuous time wavelet numerical methods are established for the nonlinear aerosol dynamics with sufficiently smooth initial conditions.Optimal error estimates are obtained for both continuous and discrete time wavelet Galerkin schemes.Numerical examples are given to show the efficiency of the wavelet technique.