Compressive strength and compressive resilience modulus are two important parameters to measure the mechanical properties of semi-rigid base.The test methods of semi-rigid base cores are different from those of the la...Compressive strength and compressive resilience modulus are two important parameters to measure the mechanical properties of semi-rigid base.The test methods of semi-rigid base cores are different from those of the laboratory samples in terms of sample acquisition,sample selection and humidity requirements.Core-drilling location,size of core sample,smoothness and humidity conditions were analyzed.The test methods of compressive strength and compressive resilience modulus were proposed.The research results show that compressive strength of lime fly-ash stabilized gravels base has a tendency of increasing during a long period.The compressive resilience modulus increases significantly with compressive strength of semi-rigid base.The compressive resilience modulus generally is 3-4 times than the recommended range of asphalt pavement design specifications.The fluctuation range of compressive resilience modulus is obviously higher than the compressive strength.The compressive resilience modulus is more sensitive to the construction variability.The overall trend between the compressive resilience modulus and the back-calculation modulus is consistent.FWD(falling weight deflectometer)back-calculation modulus can reflect the stiffness and bearing capacity of asphalt pavement.展开更多
In order to compare the impact of thickness of different layers on fatigue lives of different semi-rigid asphalt pavement structures, the mechanical results from finite element models in ABAQUS are incorporated with t...In order to compare the impact of thickness of different layers on fatigue lives of different semi-rigid asphalt pavement structures, the mechanical results from finite element models in ABAQUS are incorporated with the fatigue results from fatigue models in FE-SAFE to calculate the mechanical response and fatigue lives of semi-rigid pavement structures under heavy traffic loads. Then the influences on fatigue lives caused by the changes in the thickness of layers in pavement structures are also evaluated. The numerical simulation results show that the aggregated base and the large stone porous mixture (LSPM) base have better anti-cracking performance than the conventional semi-rigid base. The appropriate thickness range for the aggregated layer in the aggregated base is 15 to 18 cm. The thickness of the LSPM layer in the LSPM base is recommended to be less than 15 cm.展开更多
Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different ...Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different types of semi-rigid bases (lime-fly ash-stabilized sand, cement-stabilized sand, lime-fly ash-stabilized gravel, and cement-stabilized gravel) are assessed by varying the materials content. Based on freeze-thaw and compressive strength tests, this paper presents the performance of the different materials, each having different physical properties, and the optimal amounts of materials contents are proposed.展开更多
Based on the 2006 Chinese asphalt pavement deflection value design index, we used KENLAYER Pavement Analysis and Design software and lstOpt statistical analysis software to can-y on the nonlinear regression, this pape...Based on the 2006 Chinese asphalt pavement deflection value design index, we used KENLAYER Pavement Analysis and Design software and lstOpt statistical analysis software to can-y on the nonlinear regression, this paper establish high-grade highway design equations for the compressive slrain of soil sub-base top (CSSBT) and the radial compressive stress of semi-rigid base top (RCSRBT). The correlation coefficients inspection standard to get precise proof, which means that our granular base design equations have high credibility and can be used in the Chinese design index of asphalt pavement with granular base (APGB).展开更多
Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely ...Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely based on the theoretical or simulation analysis.Ther efore,in-situ health monitoring is particularly si gnificant to obtain the stress or strain information for the assessment on structural perfor mance of cement concrete pavements.To contribute this topic,different kinds of FBG based sensors have been specially designed to measure the tem-perature,pressure and deformation in cement concrete pavements.A relatively long-term monitoring has been aonducted to collect the effective data after the solidification of the pavement lasts for about 15 d.Data analysis indicates that the temperature variation inside the pavement was very stable,with maximum ampltude smaller than 2.25°C in Sep.2020.The longitudinal,transverse and ver tical deformations of the pavement behaved in non-umniform distribution,and partial me asuring points suffered from large tensile force.The concrete course had better deformation resi stance than that of the soil base,and local interfacial micro void defects existed in the soil base.The preliminary results can help to understand the actual structural performance of cement concrete pavements based on the optical fiber sensing sys tem.展开更多
This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines...This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.展开更多
The objective of this project was to characterize the freeze-thaw properties of recycled concrete(RCA)and asphalt(RAP)as unbound base and to assess how they behaved in the field for nearly 8 years.This paper includes ...The objective of this project was to characterize the freeze-thaw properties of recycled concrete(RCA)and asphalt(RAP)as unbound base and to assess how they behaved in the field for nearly 8 years.This paper includes an examination of existing information,laboratory studies of freeze-thaw behavior,and evaluation of data from Mn ROAD field-test sections in a seasonally cold region,i.e.,in Minnesota,USA.Test sections were constructed using recycled materials in the granular base layers at the Mn ROAD test facility.One test section included 100%RAP,another 100%RCA,a third one a 50/50blend of RCA/natural aggregate,and a fourth one only natural aggregate(Class 5)as a control.The stiffness(i.e.,elastic modulus)was monitored during construction and throughout the pavement life by the Minnesota Department of Transportation,along with the variation of temperatures and moisture regimes in the pavement to determine their effects on pavement performance.The resilient modulus of each material was determined by bench-scale testing in accordance with NCHRP 1-28a,as well as by field-scale tests incorporating a falling-weight deflectometer.Specimens were subjected to as many as 20 cycles of freeze-thaw in the laboratory,and the change in their resilient modulus was measured.In the field-test sections constructed with the same materials as the base course,temperature,moisture,and field modulus(from fallingweight deflectometer tests)were monitored seasonally for nearly 8 years.From the temperatures in the base course layer,the number of freeze-thaw cycles experienced in the field was determined for each test section.Inferences were made relative to modulus change versus freeze-thaw cycles.Conclusions were drawn for long-term field performances of the recycled base(RAB)in comparison to natural aggregate.展开更多
In order to research the mechanical response of continuously reinforced concrete pavement on foam concrete interlayer for a two-way curved arch bridge, the elliptical vehicle load is translated into the rectangular lo...In order to research the mechanical response of continuously reinforced concrete pavement on foam concrete interlayer for a two-way curved arch bridge, the elliptical vehicle load is translated into the rectangular load based on the equivalence method. Then, a three-dimensional finite element model of the whole bridge is established. The reliability of the model is verified. Additionally, the mechanical response of continuously reinforced concrete pavement under vehicle loading is analyzed. Finally, the most unfavorable loading conditions of tensile stress, shear stress and vertical displacement are determined. The results show that the most unfavorable loading condition of tensile stress, which is at the bottom of continuously reinforced concrete pavement on the two-way curved arch bridge, is changed compared with that on homogeneous foundation. The most unfavorable loading condition of shear stress at the top is also changed. However, the most unfavorable loading condition of vertical displacement remains unchanged. The tensile stress at the bottom of about 1/4 span of the longitudinal joint, the shear stress at the top of intersection of transverse and longitudinal joint, together with the vertical displacement at the central part of longitudinal joint, are taken as design indices during the structural design of continuously reinforced concrete pavement on the two-way curved arch bridge. The results are helpful for the design of continuously reinforced concrete pavement on unequal- thickness base for the two-way curved arch bridge.展开更多
Hydrated Cement Treated Crushed Rock Base (HCTCRB) is widely used as a base course in Western Australian pavements. HCTCRB has been designed and used as a basis for empirical approaches and in empirical practices. T...Hydrated Cement Treated Crushed Rock Base (HCTCRB) is widely used as a base course in Western Australian pavements. HCTCRB has been designed and used as a basis for empirical approaches and in empirical practices. These methods are not all-encompassing enough to adequately explain the behaviour of HCTCRB in the field. Recent developments in mechanistic approaches have proven more reliable in the design and analysis of pavement, making it possible to more effectively document the characteristics of HCTCRB. The aim of this study was to carry out laboratory testing to assess the mechanical characteristics of HCTCRB. Conventional triaxial tests and repeated load triaxial tests (RLT tests) were performed. Factors affecting the performance of HCTCRB, namely hydration periods and the amount of added water were also investigated. It was found that the shear strength parameters of HCTCRB were 177 kPa for cohesion (c) and 42~ for the internal friction angle (~). The hydration period, and the water added in this investigation affected the performance of HCTCRB. However, the related trends associated with such factors could not be assessed. All HCTCRB samples showed stress-dependency behaviour. Based on the stress stages of this experiment, the resilient modulus values of HCTCRB ranged from 300 MPa to 1100 MPa. CIRCLY, a computer program based on the multi-layer elastic theory was used in the mechanistic approach to pavement design and analysis, to determine the performance of a typical pavement model using HCTCRB as a base course layer. The mechanistic pavement design parameters for HCTCRB as a base course material were then introduced. The analysis suggests that the suitable depth for HCTCRB as a base layer for WA roads is at least 185 mm for the design equivalent standard axle (ESA) of 10 million.展开更多
文摘Compressive strength and compressive resilience modulus are two important parameters to measure the mechanical properties of semi-rigid base.The test methods of semi-rigid base cores are different from those of the laboratory samples in terms of sample acquisition,sample selection and humidity requirements.Core-drilling location,size of core sample,smoothness and humidity conditions were analyzed.The test methods of compressive strength and compressive resilience modulus were proposed.The research results show that compressive strength of lime fly-ash stabilized gravels base has a tendency of increasing during a long period.The compressive resilience modulus increases significantly with compressive strength of semi-rigid base.The compressive resilience modulus generally is 3-4 times than the recommended range of asphalt pavement design specifications.The fluctuation range of compressive resilience modulus is obviously higher than the compressive strength.The compressive resilience modulus is more sensitive to the construction variability.The overall trend between the compressive resilience modulus and the back-calculation modulus is consistent.FWD(falling weight deflectometer)back-calculation modulus can reflect the stiffness and bearing capacity of asphalt pavement.
基金The National Natural Science Foundation of China(No.51378121)
文摘In order to compare the impact of thickness of different layers on fatigue lives of different semi-rigid asphalt pavement structures, the mechanical results from finite element models in ABAQUS are incorporated with the fatigue results from fatigue models in FE-SAFE to calculate the mechanical response and fatigue lives of semi-rigid pavement structures under heavy traffic loads. Then the influences on fatigue lives caused by the changes in the thickness of layers in pavement structures are also evaluated. The numerical simulation results show that the aggregated base and the large stone porous mixture (LSPM) base have better anti-cracking performance than the conventional semi-rigid base. The appropriate thickness range for the aggregated layer in the aggregated base is 15 to 18 cm. The thickness of the LSPM layer in the LSPM base is recommended to be less than 15 cm.
基金supported by the National Natural Science Foundation of China (Nos. 51378057 and 41371081)
文摘Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different types of semi-rigid bases (lime-fly ash-stabilized sand, cement-stabilized sand, lime-fly ash-stabilized gravel, and cement-stabilized gravel) are assessed by varying the materials content. Based on freeze-thaw and compressive strength tests, this paper presents the performance of the different materials, each having different physical properties, and the optimal amounts of materials contents are proposed.
基金supported by the Singapore Government Foundation Project under the Nan Yang Technological University Transport Research Team Program (No. CTG/09-398)the Chinese Science Technology Foundation Project of Yunnan (No. TST477126A)
文摘Based on the 2006 Chinese asphalt pavement deflection value design index, we used KENLAYER Pavement Analysis and Design software and lstOpt statistical analysis software to can-y on the nonlinear regression, this paper establish high-grade highway design equations for the compressive slrain of soil sub-base top (CSSBT) and the radial compressive stress of semi-rigid base top (RCSRBT). The correlation coefficients inspection standard to get precise proof, which means that our granular base design equations have high credibility and can be used in the Chinese design index of asphalt pavement with granular base (APGB).
基金supported by the National Natural Science Foundation of China(Grant No.51908263,11932008,DL2021175003L and G2021175026L)Provincial Projects(2020-0624-RCC-0013 and JK2021-18)。
文摘Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely based on the theoretical or simulation analysis.Ther efore,in-situ health monitoring is particularly si gnificant to obtain the stress or strain information for the assessment on structural perfor mance of cement concrete pavements.To contribute this topic,different kinds of FBG based sensors have been specially designed to measure the tem-perature,pressure and deformation in cement concrete pavements.A relatively long-term monitoring has been aonducted to collect the effective data after the solidification of the pavement lasts for about 15 d.Data analysis indicates that the temperature variation inside the pavement was very stable,with maximum ampltude smaller than 2.25°C in Sep.2020.The longitudinal,transverse and ver tical deformations of the pavement behaved in non-umniform distribution,and partial me asuring points suffered from large tensile force.The concrete course had better deformation resi stance than that of the soil base,and local interfacial micro void defects existed in the soil base.The preliminary results can help to understand the actual structural performance of cement concrete pavements based on the optical fiber sensing sys tem.
文摘This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.
基金supported by the TPF-5 (129) Recycled Unbound Materials Pool Fund administered by the Minnesota Department of Transportation and the Recycled Materials Resource Center (RMRC)supported by the U.S. Federal Highway Administration
文摘The objective of this project was to characterize the freeze-thaw properties of recycled concrete(RCA)and asphalt(RAP)as unbound base and to assess how they behaved in the field for nearly 8 years.This paper includes an examination of existing information,laboratory studies of freeze-thaw behavior,and evaluation of data from Mn ROAD field-test sections in a seasonally cold region,i.e.,in Minnesota,USA.Test sections were constructed using recycled materials in the granular base layers at the Mn ROAD test facility.One test section included 100%RAP,another 100%RCA,a third one a 50/50blend of RCA/natural aggregate,and a fourth one only natural aggregate(Class 5)as a control.The stiffness(i.e.,elastic modulus)was monitored during construction and throughout the pavement life by the Minnesota Department of Transportation,along with the variation of temperatures and moisture regimes in the pavement to determine their effects on pavement performance.The resilient modulus of each material was determined by bench-scale testing in accordance with NCHRP 1-28a,as well as by field-scale tests incorporating a falling-weight deflectometer.Specimens were subjected to as many as 20 cycles of freeze-thaw in the laboratory,and the change in their resilient modulus was measured.In the field-test sections constructed with the same materials as the base course,temperature,moisture,and field modulus(from fallingweight deflectometer tests)were monitored seasonally for nearly 8 years.From the temperatures in the base course layer,the number of freeze-thaw cycles experienced in the field was determined for each test section.Inferences were made relative to modulus change versus freeze-thaw cycles.Conclusions were drawn for long-term field performances of the recycled base(RAB)in comparison to natural aggregate.
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘In order to research the mechanical response of continuously reinforced concrete pavement on foam concrete interlayer for a two-way curved arch bridge, the elliptical vehicle load is translated into the rectangular load based on the equivalence method. Then, a three-dimensional finite element model of the whole bridge is established. The reliability of the model is verified. Additionally, the mechanical response of continuously reinforced concrete pavement under vehicle loading is analyzed. Finally, the most unfavorable loading conditions of tensile stress, shear stress and vertical displacement are determined. The results show that the most unfavorable loading condition of tensile stress, which is at the bottom of continuously reinforced concrete pavement on the two-way curved arch bridge, is changed compared with that on homogeneous foundation. The most unfavorable loading condition of shear stress at the top is also changed. However, the most unfavorable loading condition of vertical displacement remains unchanged. The tensile stress at the bottom of about 1/4 span of the longitudinal joint, the shear stress at the top of intersection of transverse and longitudinal joint, together with the vertical displacement at the central part of longitudinal joint, are taken as design indices during the structural design of continuously reinforced concrete pavement on the two-way curved arch bridge. The results are helpful for the design of continuously reinforced concrete pavement on unequal- thickness base for the two-way curved arch bridge.
文摘Hydrated Cement Treated Crushed Rock Base (HCTCRB) is widely used as a base course in Western Australian pavements. HCTCRB has been designed and used as a basis for empirical approaches and in empirical practices. These methods are not all-encompassing enough to adequately explain the behaviour of HCTCRB in the field. Recent developments in mechanistic approaches have proven more reliable in the design and analysis of pavement, making it possible to more effectively document the characteristics of HCTCRB. The aim of this study was to carry out laboratory testing to assess the mechanical characteristics of HCTCRB. Conventional triaxial tests and repeated load triaxial tests (RLT tests) were performed. Factors affecting the performance of HCTCRB, namely hydration periods and the amount of added water were also investigated. It was found that the shear strength parameters of HCTCRB were 177 kPa for cohesion (c) and 42~ for the internal friction angle (~). The hydration period, and the water added in this investigation affected the performance of HCTCRB. However, the related trends associated with such factors could not be assessed. All HCTCRB samples showed stress-dependency behaviour. Based on the stress stages of this experiment, the resilient modulus values of HCTCRB ranged from 300 MPa to 1100 MPa. CIRCLY, a computer program based on the multi-layer elastic theory was used in the mechanistic approach to pavement design and analysis, to determine the performance of a typical pavement model using HCTCRB as a base course layer. The mechanistic pavement design parameters for HCTCRB as a base course material were then introduced. The analysis suggests that the suitable depth for HCTCRB as a base layer for WA roads is at least 185 mm for the design equivalent standard axle (ESA) of 10 million.