目的:将多尺度分析工具之一的Contourlet变换运用到锥形束CT(CBCT)图像去噪领域,并对Contourlet不同阈值去噪方法进行探讨。提出基于Contourlet变换结合半软阈值方法对锥形束CT去噪,并论证去噪效果。方法:利用Contourlet变换的多尺度多...目的:将多尺度分析工具之一的Contourlet变换运用到锥形束CT(CBCT)图像去噪领域,并对Contourlet不同阈值去噪方法进行探讨。提出基于Contourlet变换结合半软阈值方法对锥形束CT去噪,并论证去噪效果。方法:利用Contourlet变换的多尺度多方向性以及平移不变性,对低分辨率锥形束CT图像进行拉普拉斯塔形滤波和方向滤波多层分解后得到变换系数,随后对变换系数采用不同阈值方法进行处理,最后逆序反变换得到去噪后图像。通过软阈值和硬阈值方法在Contourlet变换中的应用,提出半软阈值结合Contourlet变换方法对锥形束CT图像去噪。通过对头,胸,盆腔各10例临床锥形束CT图像的去噪,比较三种阈值去噪效果。结果:半软阈值法在胸部和盆腔部锥形束CT图像去噪中比Contourlet硬阈值去噪在PSNR上平均高出1.40 d B和3.11 d B,但在头部锥形束CT图像处理中无优势,而Contourlet软阈值去噪后的锥形束CT图像在消除噪声的同时,信号自身的能量被消弱最多。结论:本文半软阈值法在一定程度上修正了硬,软阈值函数的缺陷,结合Contourlet变换在处理图像几何结构方面的优势,为锥形束CT图像去噪提供了一个新思路。展开更多
文摘目的:将多尺度分析工具之一的Contourlet变换运用到锥形束CT(CBCT)图像去噪领域,并对Contourlet不同阈值去噪方法进行探讨。提出基于Contourlet变换结合半软阈值方法对锥形束CT去噪,并论证去噪效果。方法:利用Contourlet变换的多尺度多方向性以及平移不变性,对低分辨率锥形束CT图像进行拉普拉斯塔形滤波和方向滤波多层分解后得到变换系数,随后对变换系数采用不同阈值方法进行处理,最后逆序反变换得到去噪后图像。通过软阈值和硬阈值方法在Contourlet变换中的应用,提出半软阈值结合Contourlet变换方法对锥形束CT图像去噪。通过对头,胸,盆腔各10例临床锥形束CT图像的去噪,比较三种阈值去噪效果。结果:半软阈值法在胸部和盆腔部锥形束CT图像去噪中比Contourlet硬阈值去噪在PSNR上平均高出1.40 d B和3.11 d B,但在头部锥形束CT图像处理中无优势,而Contourlet软阈值去噪后的锥形束CT图像在消除噪声的同时,信号自身的能量被消弱最多。结论:本文半软阈值法在一定程度上修正了硬,软阈值函数的缺陷,结合Contourlet变换在处理图像几何结构方面的优势,为锥形束CT图像去噪提供了一个新思路。