期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Research on semi-solid thixoforming process of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes 被引量:9
1
作者 WANG Kai LIU Changming +2 位作者 HAN Zhaotang CAO Jianyong ZHANG Zonghe 《Rare Metals》 SCIE EI CAS CSCD 2005年第4期381-391,共11页
The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of bille... The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of billets with non-dendritic microstructure, the remelting of billets for thixoforming and the parameters in the process of semi-sohd thixoforming have been researched. The results show that primary billets with non-dendritical structures can be prepared by forming great amount of nuclei in melt via the process of low super heat. By optimizing the remelting process through adjusting the current of the induced equipment, semi-solid billets with a structure of spherical grains were obtained from the primary billets with non-dendritical structure. The range of 580℃ to 583℃ is the proper remelting temperatures by which the billets have an expected thixotropy and can be transferred to a die-casting machine. The optimized parameters of semi-solid forming in a die-casting machine are as follows: the area of the ingate in the die is 383.5 mm^2, the speed of the pierce of the machine 5 m/s, the shot pressure of the pierce 75 MPa, and the maintenance pressure of the pierce 350 MPa. The castings of brackets for supporting generators in JH70 type motorbikes were formed by adopting the optimized processes and parameters mentioned above. 展开更多
关键词 semi-solid thixoforming az91d magnesium alloy BRACKET motorbike
下载PDF
Microstructure and mechanical properties of GTA-based wire arc additive manufactured AZ91D magnesium alloy
2
作者 Xiaoyu Cai Fukang Chen +2 位作者 Bolun Dong Sanbao Lin Chunli Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3180-3192,共13页
Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium all... Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium alloys,mainly on the Mg-Al alloy system.However,there is little research on GTA-WAAM for casting magnesium alloy.This study investigates the microstructural characteristics and mechanical properties of AZ91D magnesium alloy(AZ91D-Mg)deposited by GTA-WAAM.Single-pass multilayer thin-walled components were successfully fabricated.The results show that equiaxed grains dominate the microstructure of the deposited samples.During the remelting process,the precipitated phases dissolve into the matrix,and they precipitate and grow from the matrix under the thermal effect of the subsequent thermal cycle.The mechanical properties in the vertical and horizontal directions are similar,showing higher overall mechanical properties than the casting parts.The average yield strength is 110.5 MPa,the ultimate tensile strength is 243.6 MPa,and the elongation is 11.7%.The overall hardness distribution in the deposited sample is relatively uniform,and the average microhardness is 59.6 HV_(0.2). 展开更多
关键词 GTA Additive manufacturing az91d magnesium alloy MICROSTRUCTURE mechanical properties
下载PDF
Microstructure and mechanical properties of AZ91D magnesium alloy by expendable pattern shell casting with different mechanical vibration amplitudes and pouring temperatures
3
作者 Suo Fan He-bao Wu Jin-xiu Fang 《China Foundry》 SCIE CAS 2021年第1期1-8,共8页
To refine the microstructure and improve the mechanical properties of AZ91 D alloy by expendable pattern shell casting(EPSC),the mechanical vibration method was applied in the solidification process of the alloy.The e... To refine the microstructure and improve the mechanical properties of AZ91 D alloy by expendable pattern shell casting(EPSC),the mechanical vibration method was applied in the solidification process of the alloy.The effects of amplitude and pouring temperature on microstructure and mechanical properties of AZ91 D magnesium alloy were studied.The results indicated that the mechanical vibration remarkably improved the sizes,morphologies and distributions of the primaryα-Mg phase andβ-Mg17 Al12 phase,and the densification and tensile properties of the AZ91 D alloy.With an increase in amplitude,the microstructures were gradually refined,resulting in a continuous increase in mechanical properties of the AZ91 D alloy.While,with the increase of pouring temperature,the microstructures were continuously coarsened,leading to an obvious decrease of the mechanical properties.The tensile strength and yield strength of the AZ91 D alloy with a vibration amplitude of 1.0 mm and a pouring temperature of 730℃were 60%and 38%higher than those of the alloy without vibration,respectively. 展开更多
关键词 az91d magnesium alloy expendable pattern shell casting mechanical vibration MICROSTRUCTURE mechanical properties
下载PDF
Effect of extrusion ratio on microstructure and mechanical properties of AZ91D magnesium alloy recycled from scraps by hot extrusion 被引量:6
4
作者 胡茂良 吉泽升 陈晓瑜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期987-991,共5页
A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and... A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).Microstructural observations revealed that all the recycled specimens consisted of fine grains due to the dynamic recrystallization.The main strengthening mechanism of the recycled specimen was grain refinement strengthening and homogeneous distribution of oxide precipitates.The interfaces of individual scraps of extruded materials were not identified when the scraps were extruded with the extrusion ratio of 40-1.Oxidation layers of the scraps were broken into pieces by high compressive and shear forces under the extrusion ratio of 40-1.The ultimate tensile strength and elongation to failure increased with increasing the extrusion ratio.Recycled specimens with the extrusion ratio of 40:1 showed higher ultimate tensile strength of 342.61 MPa and higher elongation to failure of 11.32%,compared with those of the cast specimen. 展开更多
关键词 extrusion ratio az91d magnesium alloy scraps mechanical property MICROSTRUCTURE
下载PDF
Application of cyclic upsetting-extrusion to semi-solid processing of AZ91D magnesium alloy 被引量:3
5
作者 陶健全 姜巨福 +5 位作者 陈红 肖远伦 张荣朝 胡庆华 赵军 赵强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期909-915,共7页
The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructur... The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting. 展开更多
关键词 az91d magnesium alloy semi-solid processing cyclic upsetting-extrusion mechanical properties MICROSTRUCTURE
下载PDF
Microstructure of AZ91D magnesium alloy semi-solid billets prepared by SIMA method from chips 被引量:1
6
作者 许红雨 吉泽升 +1 位作者 胡茂良 王振宇 《中国有色金属学会会刊:英文版》 CSCD 2010年第S3期749-753,共5页
AZ91D magnesium alloy chips were adopted to prepare semi-solid billets.The chips were subjected to a series ofisothermal treatments for various holding times at 783?843 K after being compressed into billet at 523 K.Th... AZ91D magnesium alloy chips were adopted to prepare semi-solid billets.The chips were subjected to a series ofisothermal treatments for various holding times at 783?843 K after being compressed into billet at 523 K.The semi-solid microstructure of AZ91D magnesium alloy containing spherical solid particles was studied.The effects of reheating temperature and holding time on microstructures were investigated.And the semi-solid forming mechanism was discussed.The result shows that semi-solid billets with highly spheroidal and homogeneous grains can be prepared from chips by strain induced melt activation(SIMA) method.Meanwhile,it is found that increasing the heating temperature can accelerate the spheroidizing process and reduce the solid volume fraction.With the increase of the holding time,the solid particles become more globular,the grains grow slowly and the solid volume fraction slightly changes.At the same time,owing to the decrease ofinterfacial energy,the intragranular liquid phases form by the diffusion of solute atoms,the grain boundaries melt and grains separate from each other during the isothermal treatment.The grains gradually spheroidize and begin to merge with a further increase of the holding time.It is considered that the semi-solid forming process includes three stages:the recrystallization and the growth of grain stage,the semi-solid microstructure forming stage controlled by the diffusion of solute,and the spheroidization of solid particle stage controlled by the liquid-solid interface tension. 展开更多
关键词 az91d magnesium alloy chip strain induced MELT activation(SIMA) semi-solid MICROSTRUCTURE evolution mechanism
下载PDF
Low temperature mechanical property of AZ91D magnesium alloy fabricated by solid recycling process from recycled scraps 被引量:1
7
作者 李冬华 胡茂良 +1 位作者 王海波 赵望安 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1234-1240,共7页
Low temperature mechanical properties of AZ91D magnesium alloy fabricated by solid recycling process from recycled scraps were studied. Various microstructural analyses were performed using optical microscopy (OM) a... Low temperature mechanical properties of AZ91D magnesium alloy fabricated by solid recycling process from recycled scraps were studied. Various microstructural analyses were performed using optical microscopy (OM) and scanning electron microscopy (SEM). The recycled specimens consist of fine grains due to dynamic recrystallization and the interfaces of original individual scraps are not identified. Tensile tests were performed at a strain rate of 5 x 10 3 s 1 at room temperature (27 ~C), -70, -100 and 130 ~C, respectively. Ultimate tensile strength of the specimens increases slightly with decreasing the tensile temperature, and elongation to failure decreases with decreasing the tensile temperature. The tensile specimens at -130 ~C show the highest ultimate tensile strength of 360.65 MPa and the lowest elongation to failure of 5.46%. Impact tests were performed at room temperature (27 ~C), -70 and -130 ~C, respectively. Impact toughness decreases with decreasing the impact temperature. The impact specimens at -130 ~C show the lowest impact toughness of 3.06 J/cm2. 展开更多
关键词 az91d magnesium alloy solid recycling process mechanical property impact toughness
下载PDF
Effect of RE on the ignition-proof, microstructure and properties of AZ91D magnesium alloy 被引量:8
8
作者 Zhihong Chen Xueping Ren Ya Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第6期540-544,共5页
The magnesium alloy is prone to burn during die-casting, which limits its applications severely, so the effect of adding rare earth (RE) on the ignition-proof of AZ91D Mg alloy is studied. The results indicate that ... The magnesium alloy is prone to burn during die-casting, which limits its applications severely, so the effect of adding rare earth (RE) on the ignition-proof of AZ91D Mg alloy is studied. The results indicate that the addition of mischmetal RE elements has a remarkable influence on the ignition-proof property of the magnesium alloy. It is found that the ignition temperature of the magnesium alloy can be greatly raised by adding a proper amount of RE. When the amount is 0.1wt%, the ignition temperature reaches 877℃ which is 206℃ higher than that of AZ91D without RE and the mechanical properties of the alloy are also improved, However, the amount of RE must be properly controlled because too much RE would induce grain coarsening and reduce the mechanical properties. 展开更多
关键词 az91d magnesium alloy ignition-proof RE mechanical properties MICROSTRUCTURE
下载PDF
Microstructure and tensile properties of thixo-diecast AZ91D magnesium alloy 被引量:2
9
作者 Ai Xiulan Quan Gaofeng +1 位作者 Liu Zhaoming Gao Hong 《China Foundry》 SCIE CAS 2013年第5期288-293,共6页
The thixo-diecasting (TDC) process is the combination of semi-solid billet preparation technology and die casting technology. The TDC process not only keeps the characteristics of thixo-forming but also has high eff... The thixo-diecasting (TDC) process is the combination of semi-solid billet preparation technology and die casting technology. The TDC process not only keeps the characteristics of thixo-forming but also has high efficiency and low cost. In the present work, the microstructures and mechanical properties of an AZ91D magnesium alloy prepared by the thixo-diecasting (TDC) process were characterized in as-cast condition. The TDC alloy produced exhibits a unique microstructure containing a-Mg solid solution and/3-Mg^TAI^2 intermetallic compound, and there are some small droplets and a small gray globule with eutectic structure in the primary a-Mg grains. The ultimate tensile strength and elongation of the TDC alloy also increase in comparison with other processes, such as thixocasting. Fracture surface observation shows that a crack mainly originates from the brittle fracture of the eutectic phases. The deformation of ductile a-Mg phase provides the TDC alloy with the main strain. 展开更多
关键词 az91d magnesium alloys semi-solid THIXO-dIECASTING MICROSTRUCTURE tensile properties
下载PDF
Rheo-diecasting of AZ91D magnesium alloy by taper barrel rheomoulding process 被引量:5
10
作者 杨柳青 康永林 +2 位作者 张帆 丁瑞华 李炯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期966-972,共7页
A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteri... A self-developed taper barrel rheomoulding(TBR)machine was introduced,and the rheo-diecasting process was implemented by combining TBR machine with the high pressure die casting(HPDC)machine.Microstructural characteristics of the rheo-diecasting components were investigated at different rotation speeds.Flow characteristics and microstructural evolution of the semi-solid slurry during the rheo-diecasting process were analyzed and the mechanical properties of the rheo-diecasting components were studied.The experimental results show that the process is able to obtain such components in which the primaryα-Mg particles are fine,nearly spherical and uniformly distributed in the matrix.When the rotation speed of internal taper barrel is 700 r/min,the primaryα-Mg particles get a mean diameter of about 45μm and a shape factor of about 0.81.The magnesium alloy melt has complex stirring-fixed flow characteristics when flowing in TBR machine.Compared with conventional die-casing process,the rheo-diecasting process can improve the mechanical properties of components;especially,the elongation is improved by 80%. 展开更多
关键词 az91d magnesium alloy RHEO-dIECASTING MICROSTRUCTURE flow characteristics mechanical properties
下载PDF
Study on Ignition-Proof AZ91D Magnesium Alloy Added with Rare Earth 被引量:1
11
作者 刘金萍 李华基 薛寒松 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第S1期117-121,共5页
Magnesium alloy is prone to burning during its melting and casting processes in air, which is a major factor of obstructing its application. Fluxes and cover gases are currently used for the melting and production pro... Magnesium alloy is prone to burning during its melting and casting processes in air, which is a major factor of obstructing its application. Fluxes and cover gases are currently used for the melting and production processes, and semi-solid casting is also used to shape composites made of magnesium alloy, but there still remain many problems. Alloying is a promising method of preventing magnesium from burning. The effect of RE additions on the ignition temperature of AZ91D magnesium alloy was investigated. The changes of the quality of oxidation film and the as-cast microstructure were analyzed, and the mechanical property was compared with that without rare earth. For AZ91D with RE in the range of 0.08% to 0.12%. It is shown that the ignition temperature point can be greatly heightened, the quality of oxidation film is obviously improved, the as-cast microstructure is refined greatly, and the mechanical property is bettered a little, therefore, such an alloy is promising. 展开更多
关键词 az91d magnesium alloy mischmetal ignition temperature oxidation film microstructure and mechanical property rare earths
下载PDF
Effect of Adding Extruded Mg-Mischmetal Intermediate Alloy on Microstructure and Properties of Die-Casting Magnesium Alloy AZ91D 被引量:1
12
作者 张奎 徐玉磊 +3 位作者 李兴刚 张凯 崔代金 雷健 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期555-560,共6页
The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were in... The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were investigated. The Mg-MM intermediate alloy was prepared by permanent mold casting and then was extruded into the bars. The microstructure and analytical studies were carried out using optical microscopy and differential scanning calorimetry (DSC). Testing results shows the Mg-MM intermediate alloy could melt easily down at die casting temperature of 680 ℃ that was lower than the melting point of lanthanum (918 ℃) and that of cerium (798 ℃). This was propitious to protection the alloy from the oxidation at high temperatures. Then magnesium alloy test bars were produced under conventional cold chamber die casting condition with addition of different weight of the Mg-MM intermediate alloy. Observation and analysis indicated that the microstructures of the alloy were refined and RE containing Al phase was formed with increasing RE addition. The data obtained by tensile tests showed that alloying with mischmetal improved the tensile property of the AZ91D magnesium die casting alloy at ambient temperature. 展开更多
关键词 az91d magnesium alloy intermediate alloy die casting microstructure mechanical property rare earths
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部