Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relati...Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.展开更多
Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain a...Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain an illegitimate benefit or createmisleading publicity by using tempered images.Exiting forgery detectionmethods can classify only one of the most widely used Copy-Move and splicing forgeries.However,an image can contain one or more types of forgeries.This study has proposed a hybridmethod for classifying Copy-Move and splicing images using texture information of images in the spatial domain.Firstly,images are divided into equal blocks to get scale-invariant features.Weber law has been used for getting texture features,and finally,XGBOOST is used to classify both Copy-Move and splicing forgery.The proposed method classified three types of forgeries,i.e.,splicing,Copy-Move,and healthy.Benchmarked(CASIA 2.0,MICCF200)and RCMFD datasets are used for training and testing.On average,the proposed method achieved 97.3% accuracy on benchmarked datasets and 98.3% on RCMFD datasets by applying 10-fold cross-validation,which is far better than existing methods.展开更多
With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recogni...With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods.展开更多
Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking ...Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR.展开更多
With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasin...With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.展开更多
Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to bes...Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.展开更多
In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world da...In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework.展开更多
An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather condi...An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed.展开更多
Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Theref...Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Therefore,this paper seeks to solve a type of optimal control problem that maximizes final velocity subject to equality point constraint of impact angle con-straint.It is proved that the crude problem of maximizing final velocity is equivalent to minimizing a quadratic-form cost of cur-vature.The closed-form guidance law is henceforth derived using optimal control theory.The derived analytical guidance law coincides with the widely-used optimal guidance law with impact angle constraint(OGL-IAC)with a set of navigation parameters of two and six.On this basis,the optimal emission angle is determined to further increase the final velocity.The derived optimal value depends solely on the initial line-of-sight angle and impact angle constraint,and thus practical for real-world appli-cations.The proposed guidance law is validated by numerical simulation.The results show that the OGL-IAC is superior to the benchmark guidance laws both in terms of final velocity and missing distance.展开更多
In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results a...In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.展开更多
In this paper,we investigate the reverse order law for Drazin inverse of three bound-ed linear operators under some commutation relations.Moreover,the Drazin invertibility of sum is also obtained for two bounded linea...In this paper,we investigate the reverse order law for Drazin inverse of three bound-ed linear operators under some commutation relations.Moreover,the Drazin invertibility of sum is also obtained for two bounded linear operators and its expression is presented.展开更多
Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by t...Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future.展开更多
In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy ...In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.展开更多
Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do ...Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.展开更多
Conservation law plays a very important role in many geometric variational problems and related elliptic systems.In this note,we refine the conservation law obtained by Lamm-Rivière for fourth order systems and d...Conservation law plays a very important role in many geometric variational problems and related elliptic systems.In this note,we refine the conservation law obtained by Lamm-Rivière for fourth order systems and de Longueville-Gastel for general even order systems.展开更多
Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In orde...Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In order to mitigate the threat of geohazards to human engineering activities in the region,an overall understanding of the distribution pattern of geohazards and susceptibility assessment are necessary.In this paper,a gradient belt of the Western Sichuan Plateau and its zoning criteria were defined.Subsequently,on the basis of relief amplitude,distance to faults,rainfall,and human activities,three indicators of endogenic process were introduced:Bouguer gravity anomaly gradient,vertical deformation gradient,and horizontal deformation gradient.Thereafter,the distribution patterns of geohazards were investigated through mathematical statistics and ArcGIS software.By randomly selecting 10,449 hazards,a geohazard susceptibility map was generated using the Information Value(IV)model.Finally,the IV model was validated against 5224 hazards using the Area Under Curve(AUC)method.The results show that 47.6%of the geohazards were distributed in the zone of steep slope.Geohazards showed strong responses to distance to faults,human activities,and annual rainfall.The distribution of geohazards in the gradient belt of the Western Sichuan Plateau is more sensitive to vertical internal dynamics factors(such as vertical deformation gradient and Bouguer gravity anomaly gradient)without any apparent sensitivity to horizontal internal dynamics factors.The areas of high and very-high risk account for up to 32.22%,mainly distributed in the Longmenshan and Anning River faults.According to the AUC plot,the success rate of the IV model for generating the susceptibility map is 76%.This susceptibility map and geohazard distribution pattern can provide a reference for geological disaster monitoring,preparation of post-disaster emergency measures,and town planning.展开更多
A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in por...A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.展开更多
A polarized beam of energy is usually interpreted as a set of particles, all having the same polarization state. Difference in behavior between the one and the other particle is then explained by a number of counter-i...A polarized beam of energy is usually interpreted as a set of particles, all having the same polarization state. Difference in behavior between the one and the other particle is then explained by a number of counter-intuitive quantum mechanical concepts like probability distribution, superposition, entanglement and quantized spin. Alternatively, I propose that a polarized beam is composed of a set of particles with a cosine distribution of polarization angles within a polarization area. I show that Malus’ law for the intensity of a beam of polarized light can be derived in a straightforward manner from this distribution. I then show that none of the above-mentioned counter-intuitive concepts are necessary to explain particle behavior and that the ontology of particles, passing through a polarizer, can be easily and intuitively understood. I conclude by formulating some questions for follow-up research.展开更多
Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as ...Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.展开更多
文摘Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R236),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Today’s forensic science introduces a new research area for digital image analysis formultimedia security.So,Image authentication issues have been raised due to the wide use of image manipulation software to obtain an illegitimate benefit or createmisleading publicity by using tempered images.Exiting forgery detectionmethods can classify only one of the most widely used Copy-Move and splicing forgeries.However,an image can contain one or more types of forgeries.This study has proposed a hybridmethod for classifying Copy-Move and splicing images using texture information of images in the spatial domain.Firstly,images are divided into equal blocks to get scale-invariant features.Weber law has been used for getting texture features,and finally,XGBOOST is used to classify both Copy-Move and splicing forgery.The proposed method classified three types of forgeries,i.e.,splicing,Copy-Move,and healthy.Benchmarked(CASIA 2.0,MICCF200)and RCMFD datasets are used for training and testing.On average,the proposed method achieved 97.3% accuracy on benchmarked datasets and 98.3% on RCMFD datasets by applying 10-fold cross-validation,which is far better than existing methods.
基金supported in part by the National Natural Science Foundation of China under Grant No.62171334,No.11973077 and No.12003061。
文摘With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods.
基金supported in part by the National Natural Science Foundation of China under grants 62202044 and 62372039Scientific and Technological Innovation Foundation of Foshan under grant BK22BF009+3 种基金Excellent Youth Team Project for the Central Universities under grant FRF-EYIT-23-01Fundamental Research Funds for the Central Universities under grants 06500103 and 06500078Guangdong Basic and Applied Basic Research Foundation under grant 2022A1515240044Beijing Natural Science Foundation under grant 4232040.
文摘Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR.
基金This research is partially supported by the National Natural Science Foundation of China under Grant No.62376043Science and Technology Program of Sichuan Province under Grant Nos.2020JDRC0067,2023JDRC0087,and 24NSFTD0025.
文摘With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.
基金supported by the DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowshipsupported by the NGA under Contract No.HM04762110003.
文摘Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.
基金supported in part by the National Natural Science Foundation of China under Grant 62171203in part by the Jiangsu Province“333 Project”High-Level Talent Cultivation Subsidized Project+2 种基金in part by the SuzhouKey Supporting Subjects for Health Informatics under Grant SZFCXK202147in part by the Changshu Science and Technology Program under Grants CS202015 and CS202246in part by Changshu Key Laboratory of Medical Artificial Intelligence and Big Data under Grants CYZ202301 and CS202314.
文摘In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework.
基金supported by the Heilongjiang Touyan Innovative Program Teammade possible through the generous support of the NSFC (Grant No. 52176065)the Fundamental Research Funds for the Central Universities(Grant No. 2022FRFK060022)
文摘An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed.
文摘Final velocity and impact angle are critical to missile guidance.Computationally efficient guidance law with compre-hensive consideration of the two performance merits is challeng-ing yet remains less addressed.Therefore,this paper seeks to solve a type of optimal control problem that maximizes final velocity subject to equality point constraint of impact angle con-straint.It is proved that the crude problem of maximizing final velocity is equivalent to minimizing a quadratic-form cost of cur-vature.The closed-form guidance law is henceforth derived using optimal control theory.The derived analytical guidance law coincides with the widely-used optimal guidance law with impact angle constraint(OGL-IAC)with a set of navigation parameters of two and six.On this basis,the optimal emission angle is determined to further increase the final velocity.The derived optimal value depends solely on the initial line-of-sight angle and impact angle constraint,and thus practical for real-world appli-cations.The proposed guidance law is validated by numerical simulation.The results show that the OGL-IAC is superior to the benchmark guidance laws both in terms of final velocity and missing distance.
文摘In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.
基金supported by the NNSF of China(12261065)the NSF of Inner Mongolia(2022MS01005)+1 种基金the Basic Science Research Fund of the Universities Directly under the Inner Mongolia Autonomous Re-gion(JY20220084)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2317).
文摘In this paper,we investigate the reverse order law for Drazin inverse of three bound-ed linear operators under some commutation relations.Moreover,the Drazin invertibility of sum is also obtained for two bounded linear operators and its expression is presented.
基金financially supported by the National Natural Science Foundation of China(Nos.52174239 and 52204284)。
文摘Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future.
基金supported by the NSFC grant 12101128supported by the NSFC grant 12071392.
文摘In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.
基金supported by Grant PID2020-117211GB-I00funded by MCIN/AEI/10.13039/501100011033+4 种基金by Grant CIAICO/2021/227funded by the Generalitat Valencianasupported by the Ministerio de Ciencia e Innovacion of Spain(Grant Ref.PID2021-125709OB-C21)funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby the Generalitat Valenciana(CIAICO/2021/224).
文摘Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.
基金supported by the Young Scientist Program of the Ministry of Science and Technology of China(2021YFA1002200)the National Natural Science Foundation of China(12101362)+4 种基金the Natural Science Foundation of Shandong Province(ZR2021QA003)supported by the National Natural Science Foundation of China(12271296)the Natural Science Foundation of Hubei Province(2024AFA061)supported by the National Natural Science Foundation of China(11571131)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,P.R.China。
文摘Conservation law plays a very important role in many geometric variational problems and related elliptic systems.In this note,we refine the conservation law obtained by Lamm-Rivière for fourth order systems and de Longueville-Gastel for general even order systems.
文摘Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In order to mitigate the threat of geohazards to human engineering activities in the region,an overall understanding of the distribution pattern of geohazards and susceptibility assessment are necessary.In this paper,a gradient belt of the Western Sichuan Plateau and its zoning criteria were defined.Subsequently,on the basis of relief amplitude,distance to faults,rainfall,and human activities,three indicators of endogenic process were introduced:Bouguer gravity anomaly gradient,vertical deformation gradient,and horizontal deformation gradient.Thereafter,the distribution patterns of geohazards were investigated through mathematical statistics and ArcGIS software.By randomly selecting 10,449 hazards,a geohazard susceptibility map was generated using the Information Value(IV)model.Finally,the IV model was validated against 5224 hazards using the Area Under Curve(AUC)method.The results show that 47.6%of the geohazards were distributed in the zone of steep slope.Geohazards showed strong responses to distance to faults,human activities,and annual rainfall.The distribution of geohazards in the gradient belt of the Western Sichuan Plateau is more sensitive to vertical internal dynamics factors(such as vertical deformation gradient and Bouguer gravity anomaly gradient)without any apparent sensitivity to horizontal internal dynamics factors.The areas of high and very-high risk account for up to 32.22%,mainly distributed in the Longmenshan and Anning River faults.According to the AUC plot,the success rate of the IV model for generating the susceptibility map is 76%.This susceptibility map and geohazard distribution pattern can provide a reference for geological disaster monitoring,preparation of post-disaster emergency measures,and town planning.
基金Supported by the Original Exploration Project of National Natural Science Foundation of China(5215000105)Young Teachers Fund for Higher Education Institutions of Huo Yingdong Education Foundation(171043)。
文摘A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.
文摘A polarized beam of energy is usually interpreted as a set of particles, all having the same polarization state. Difference in behavior between the one and the other particle is then explained by a number of counter-intuitive quantum mechanical concepts like probability distribution, superposition, entanglement and quantized spin. Alternatively, I propose that a polarized beam is composed of a set of particles with a cosine distribution of polarization angles within a polarization area. I show that Malus’ law for the intensity of a beam of polarized light can be derived in a straightforward manner from this distribution. I then show that none of the above-mentioned counter-intuitive concepts are necessary to explain particle behavior and that the ontology of particles, passing through a polarizer, can be easily and intuitively understood. I conclude by formulating some questions for follow-up research.
基金the National Basic Research Development of China(2011CB936003)the National Natural Science Foundation of China(50971116)。
文摘Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.