期刊文献+
共找到706篇文章
< 1 2 36 >
每页显示 20 50 100
Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region?
1
作者 Jialin Yang Liangqi Ren +6 位作者 Nanhai Zhang Enke Liu Shikun Sun Xiaolong Ren Zhikuan Jia Ting Wei Peng Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1541-1556,共16页
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont... Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area. 展开更多
关键词 plastic film mulching soil organic carbon labile organic carbon fractions semiarid area
下载PDF
Surface Regional Heat(Cool) Island Effect and Its Diurnal Differences in Arid and Semiarid Resource-based Urban Agglomerations
2
作者 CHEN Yan XIE Miaomiao +2 位作者 CHEN Bin WANG Huihui TENG Yali 《Chinese Geographical Science》 SCIE CSCD 2023年第1期131-143,共13页
With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regio... With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regional heat island(RHI) with a larger range of impact to the regional environment. However, there are few studies on the heat island effect of urban agglomerations in arid and semiarid regions, so this paper selects the urban agglomeration of Hohhot, Baotou and Ordos(HBO) of Inner Mongolia, China as the study area. Based on the 8-day composite Moderate-resolution Imaging Spectroradiometer(MODIS) surface temperature data(156scenes in all) and land use maps for 2005, 2010, and 2015, we analyze the spatiotemporal distributions of regional heat(cool) islands(RH(C)I) and the responses of surface temperatures to land-use changes in the diurnal and interannual surface cities. The results showed that: 1) from 2005 to 2015, urban areas showed the cold island effect during the day, with the area of the cold island showing a shrinking feature;at night, they showed the heat island effect, with the area of the heat island showing a first decrease and then an increase.2) From 2005 to 2015, the land development(unutilized land to building land) brings the greatest temperature increase(ΔT = 1.36°C)during the day, while the greatest temperature change at night corresponds to the conversion of cultivated land to building land(ΔT =0.78°C) exhibited the largest changes at night. From 2010 to 2015, the land development(grassland to building land) bring the greatest temperature increase(ΔT = 0.85°C) during the day, while the great temperature change at night corresponds to the conversion of water areas to building land(ΔT = 1.38°C) exhibited the largest changes at night. Exploring the spatial and temporal evolution of surface urban heat(cool) islands in urban agglomerations in arid and semiarid regions will help to understand the urbanization characteristics of urban agglomerations and provide a reference for the formulation of policies for the coordinated and healthy development of the region and co-governance of regional environmental problems. 展开更多
关键词 regional heat(cool)island(RH(C)I) urban agglomeration arid and semiarid areas land-use change land surface temperature(LST)
下载PDF
四川盆地东北部中—晚侏罗世沉积环境与古气候
3
作者 周敏 李祥辉 王旌羽 《沉积学报》 CAS CSCD 北大核心 2024年第3期1003-1015,共13页
【目的】侏罗纪是典型的温室气候时期,期间存在着气候长期变化和短期波动,且在陆相盆地有响应。我国同期发育多个大型陆相盆地,但各个盆地中的记录有差异,本文试图对四川盆地东北部沉积环境及古气候变化做较为细致的刻画。【方法】基于... 【目的】侏罗纪是典型的温室气候时期,期间存在着气候长期变化和短期波动,且在陆相盆地有响应。我国同期发育多个大型陆相盆地,但各个盆地中的记录有差异,本文试图对四川盆地东北部沉积环境及古气候变化做较为细致的刻画。【方法】基于该地区中—上侏罗统陆相红层的野外详细观察,开展了显微碎屑组分统计分析,碳—氧同位素分析,二氧化碳浓度重建等研究。【结果】下部岩性以红棕色泥岩为主,向上绿灰、浅灰色长石类砂岩增多;沉积环境单元分为曲流河、湖泊和古土壤;相序上表现为中侏罗统沙溪庙组以低砂泥比的曲流河泥岩为主,常土壤化改造形成古土壤相,上侏罗统遂宁组下部湖泊泥岩和粉砂岩占优,遂宁组上部和蓬莱镇组演变为高砂泥比的曲流河,岩性变粗地层变厚;相对于川西和川中地区,川东北地区沉积环境单元和相序较为单一。依据F/Q和F/L指数,将研究区中—晚侏罗世气候变化分为半干旱—干旱两个半旋回,分别对应下沙溪庙组、上沙溪庙组+遂宁组下部、遂宁组上部+蓬莱镇组。二氧化碳浓度变化指示中侏罗世相对温凉,晚侏罗世早期转为温暖,中—晚期属于高温炎热气候,与全球同期古海洋气候格局相似。【结论】总体而言,四川盆地东北部中—晚侏罗世属于温凉—温暖的干旱—半干旱气候,与四川盆地其他地区相似,但晚侏罗世中—晚期东、西部可能存在高温炎热与半湿润间断的差异。 展开更多
关键词 沉积环境 干旱—半干旱 古气候 侏罗纪 四川盆地
下载PDF
内蒙古半干旱区气溶胶散射特性及影响因素
4
作者 叶虎 裴浩 +2 位作者 姜艳丰 那庆 张立伟 《干旱区研究》 CSCD 北大核心 2024年第5期730-741,共12页
利用2020年7月9日至2023年7月8日锡林浩特市散射系数、黑碳(BC)、PM_(2.5)、PM_(10)、SO_(2)、NO_(2)质量浓度以及气象要素观测资料,从气溶胶散射特性的时间变化、概率密度分布、与不同类型气溶胶和气象因子的相关程度等方面展开分析,... 利用2020年7月9日至2023年7月8日锡林浩特市散射系数、黑碳(BC)、PM_(2.5)、PM_(10)、SO_(2)、NO_(2)质量浓度以及气象要素观测资料,从气溶胶散射特性的时间变化、概率密度分布、与不同类型气溶胶和气象因子的相关程度等方面展开分析,并针对该地区开展散射系数等级划分。结果表明:(1)该地区气溶胶散射能力整体水平较低,但是春季沙尘输送、冬季及夜晚逆温出现频率较高会造成该地区气溶胶散射能力的明显增强。(2)粒径越小的气溶胶与散射系数的相关程度越高,与散射系数的相关系数大小依次为BC>PM_(2.5)>PM_(10),但同时具有季节差异性,此外秋、冬季硝酸盐颗粒是造成该地区散射能力增强的重要因素,夏、秋、冬季硫酸盐颗粒对该地区的散射能力也具有一定贡献。(3)以相关系数的增幅作为当前气象因素对散射系数的贡献率,得到当前气象因素对散射系数的贡献率在1%~2%之间。 展开更多
关键词 半干旱区 气溶胶 散射系数 等级划分 贡献率 内蒙古
下载PDF
高寒半干旱区沙地植被土壤水分变化特征及其影响因素
5
作者 徐莹 关晋宏 邓磊 《生态学报》 CAS CSCD 北大核心 2024年第13期5554-5566,共13页
为揭示高寒半干旱区不同降雨强度对植被差异下沙化土地土壤含水量变化过程的影响。以青海共和盆地东缘黄沙头乔木、灌木和裸地为研究对象,基于2020、2021和2022年5月—9月植物生长季土壤含水量、降雨量和细根分布监测数据,分析2020年、2... 为揭示高寒半干旱区不同降雨强度对植被差异下沙化土地土壤含水量变化过程的影响。以青海共和盆地东缘黄沙头乔木、灌木和裸地为研究对象,基于2020、2021和2022年5月—9月植物生长季土壤含水量、降雨量和细根分布监测数据,分析2020年、2021年、2022年各生境0—200 cm深度土壤水分对小雨、中雨、大雨的响应。连续动态监测结果表明,大雨、中雨条件下,随土层深度的增加土壤水分对降雨的响应时间延长。乔木林和灌木林土壤水分对中雨、大雨最大响应深度为70 cm、100 cm,裸地对中雨、大雨最大响应深度为50 cm、100 cm。随土层深度的增加,小雨对乔木、灌木、裸地土壤水分的补充作用逐渐降低;中雨对灌木林土壤水分的补充作用逐渐降低,乔木林与之相反;大雨时乔木林、灌木林变异系数呈现S型变化,因此大雨对其土壤水分的补充存在明显的分层利用现象。不同植被类型土壤水分空间变化差异以及对降雨的响应受植被冠层截留对降水再分配的影响,土壤含水量与环境因子间的主成分分析表明,郁闭度、叶面积指数、150—200 cm土壤容重、细根生物量密度、根表面积密度、根长密度、比根长是反映研究区土壤水分的显著因子(P<0.05)。研究表明不同降雨强度植被土壤含水量存在明显差异,高寒半干旱区沙化土地乔、灌植被的建植可提升深层土壤储水能力;结果可为沙化土地恢复和水土流失防控提供科学依据。 展开更多
关键词 高寒半干旱区 沙化土地 降雨量 深层土壤水分 植被类型
下载PDF
Morphometry and Mineral Content in the Seeds and Soil of Two Species of Argemone L.(Papaveraceae)in the Central Part of the Chihuahuan Desert
6
作者 Perla Patricia Ochoa-García Jaime Sánchez-Salas +2 位作者 Ricardo Trejo-Calzada Jesús JosafathQuezada-Rivera Fabián García-González 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期371-386,共16页
The genus Argemone L.(Papaveraceae)is found widely distributed in Mexico’s Chihuahuan Desert(CD).Some species of this genus are of phytochemical or ethnobotanical interest.They are inedible plants considered as scrub... The genus Argemone L.(Papaveraceae)is found widely distributed in Mexico’s Chihuahuan Desert(CD).Some species of this genus are of phytochemical or ethnobotanical interest.They are inedible plants considered as scrubs.To date they have not been broadly studied;thus,their ecology is,to our knowledge,unknown.The present work was centered around carrying out a morphometric analysis and the determination of minerals in the soil and seeds of the wild populations of Argemone at sites belonging to two ecoregions of the CD in Mexico.In April 2021 and April 2022,seeds of Argemone spp.,and soil samples were collected at 10 sites of the CD.The seeds were selected under a randomized design,and weight,length,diameter,thickness,buoyancy,and mineral content were determined.The soil samples were obtained under the Mexican regulation NOM-021-RECNAT-2000,and determinations of mineral content,electrical conductivity,apparent density,and soluble anions were performed.The information obtained was grouped by variable,species,and place of precedence.The statistical tests consisted of an ANOVA,Tukey means tests considering p≤0.05,and a Principal Components Analysis.Argemone pleiacantha exhibited differences in terms of weight(F=54.79,p=0.001),length(F=90.83,p=0.001),thickness(F=104.89,p=0.001),and diameter(F=155.82,p=0.001),and the differences in Argemone mexicana were in weight(F=46.71,p=0.001),thickness(F=187.49,p=0.001),length(F=191.56,p=0.001),and diameter(F=215.83,p=0.001).The evaluated seeds reached their maximal imbibition velocity at 24 h of evaluation.The content of the micro-and macro-nutrients analyzed in the seeds and soil suggest a tight relation with the morphometric characteristics of the seeds. 展开更多
关键词 MICRONUTRIENTS agricultural area semiarid zone ECOREGION BUOYANCY
下载PDF
基于同位素的神东矿区植物吸水深度及生态水位研究
7
作者 赫云兰 杨英明 +3 位作者 王玺凯 李可新 房鲁鹭 刘卓鸣 《煤炭工程》 北大核心 2024年第4期199-203,共5页
为了研究神东矿区煤炭开采造成的地下水位下降是否会对地表植被的生存产生威胁,以神东矿区分布最广泛的植物沙蒿为研究对象,采用水稳定同位素示踪技术研究神东矿区成年沙蒿的根系吸水深度,通过MixSIAR同位素混合模型分析成年沙蒿的土壤... 为了研究神东矿区煤炭开采造成的地下水位下降是否会对地表植被的生存产生威胁,以神东矿区分布最广泛的植物沙蒿为研究对象,采用水稳定同位素示踪技术研究神东矿区成年沙蒿的根系吸水深度,通过MixSIAR同位素混合模型分析成年沙蒿的土壤水分吸收策略。结果显示,研究区成年沙蒿的吸水的极限深度为2.5~3 m,沙蒿会较均匀的吸收不同深度的土壤水分,但其水分利用策略也会受到土壤含水率高低的影响。该研究揭示了研究区成年沙蒿的根系吸水深度和水分利用策略,从植物角度说明了该区域生态水位的下限是2.5~3 m。 展开更多
关键词 同位素 半干旱煤矿区 根系吸水深度 植物水分利用 生态水位
下载PDF
The Interannual Variability of Summer Rainfall in the Arid and Semiarid Regions of Northern China and Its Association with the Northern Hemisphere Circumglobal Teleconnection 被引量:27
8
作者 黄刚 刘永 黄荣辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第2期257-268,共12页
Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional ch... Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional characteristics of JJAS mean rainfall are revealed by a rotated empirical orthogonal function (REOF) analysis. The analysis identifies three regions of large interannual variability of JJAS rainfall: North China (NC), Northeast China (NEC), and the Taklimakan Desert in Northwest China (TDNWC). Summer rainfall over NC is shown to have displayed a remarkable dry period from the late 1990s; while over NEC, decadal-scale variation with a significant decreasing trend in the last two decades is found, and over TDNWC, evidence of large interannual variability is revealed. Results also show that the interannual variability of JJAS rainfall in northern China is closely associated with the Northern Hemisphere circumglobal teleconnection (CGT). Correlation coefficients between the CGT index and regional-averaged JJAS mean rainfall over NC and NEC were calculated, revealing values of up to 0.50 and 0.53, respectively, both of which exceeded the 99% confidence level. 展开更多
关键词 rotated empirical orthogonal function analysis ARID semiarid interannual variability circumglobal teleconnection
下载PDF
Improvement of Wheat Water Use Efficiency in Semiarid Area of China 被引量:15
9
作者 DENGXi-ping SHANLun +2 位作者 KANGShao-zhong InanageShinobu MohanmedElfa 《Agricultural Sciences in China》 CAS CSCD 2003年第1期35-44,共10页
The greatest fear of global climate change is drought since in most areas where wheat is grown water is the most important factor influencing wheat yield. Average wheat yield throughout the world is only 30-60% of the... The greatest fear of global climate change is drought since in most areas where wheat is grown water is the most important factor influencing wheat yield. Average wheat yield throughout the world is only 30-60% of the attainable yield potential because water shortage is the major factor preventing the realization of maximum yield. Periods of drought alternating with short periods of available water are common conditions to influence wheat productivity. Such conditions include variable frequency of dry and wet periods, intensity of drought, rate of drought onset and patterns of soil water deficit and/or atmospheric water deficit. It is this deficit and variable water conditions in semiarid environments that influence wheat productivity variously. This paper reviewed the physiological adaptation and benefits associated with deficit and variable water conditions. In addition, it also highlights the compensative effect of limited irrigation and breeding of new varieties for high water use efficiency (WUE) that could improve wheat productivity under water-limited environments in the semiarid regions. Considerable potential for further improvement in wheat WUE and productivity in semiarid environments seems to depend on effective conservation of moisture and efficient use of this limited water such as soil fertility improvement, conservation tillage, residues and film mulch, rain water harvesting for limited irrigation, and breeding for water saving varieties. Different crop, soil and water management strategies should be adjusted according to the conditions that prevail in various semiarid areas. By combining soil and water conservation approaches and adjusting the cropping system by growing drought-tolerant and water-saving cultivars, increase in wheat WUE and productivity could be achieved. 展开更多
关键词 semiarid conditions Dryland wheat Physiological adaptation WUE improvement
下载PDF
Soil mulching can mitigate soil water defi ciency impacts on rainfed maize production in semiarid environments 被引量:13
10
作者 ZHU Lin LIU Jian-liang +3 位作者 LUO Sha-sha BU Ling-duo CHEN Xin-ping LI Shi-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第1期58-66,共9页
Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improv... Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improving agricultural productivity and water utilization. However, the effects of these mulching practices on soil water supply and plant water use associated with crop yield are not well understood. A 3-yr study was conducted to analyze the occurrence and distribution of dry spells in a semiarid region of Northwest China and to evaluate the effects of non-mulching (CK), gravel mulching (GM) and plastic film mulching (FM) on the soil water supply, plant water use and maize (Zea mays L.) grain yield. Rainfall analysis showed that dry spells of ≥5 days occurred frequently in each of 3 yr, accounting for 59.9-69.2% of the maize growing periods. The 〉15-d dry spells during the jointing stage would expose maize plants to particularly severe water stress. Compared with the CK treatment, both the GM and FM treatments markedly increased soil water storage during the early growing season. In general, the total evapotranspiration (ET) was not significantly different among the three treatments, but the mulched treatments significantly increased the ratio of pre- to post-silking ET, which was closely associated with yield improvement. As a result, the grain yield significantly increased by 17.1, 70.3 and 16.7% for the GM treatment and by 28.3, 87.6 and 38.2% for the FM treatment in 2010, 2011 and 2012, respectively, compared with the CK treatment. It's concluded that both GM and FM are effective strategies for mitigating the impacts of water deficit and improving maize production in semiarid areas. However. FM is more effective than GM. 展开更多
关键词 semiarid areas plastic film mulching gravel mulching dry spell EVAPOTRANSPIRATION maize yield
下载PDF
Emission characteristics of carbon dioxide in the semiarid Stipa grandis steppe in Inner Mongolia, China 被引量:5
11
作者 LIU Xing-ren QI Yu-chun +5 位作者 LIU Ji-yuan Manfred Domroes LIU Li-xin GENG Yuan-bo YANG Xiao-hong LI Ming-feng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第3期488-494,共7页
Using the static opaque chamber method, the soil respiration rates (SR) were measured through the continuous experiments in situ in semiarid Stipa grandis steppe in Xilin River Basin of Inner Mongolia, China from Ju... Using the static opaque chamber method, the soil respiration rates (SR) were measured through the continuous experiments in situ in semiarid Stipa grandis steppe in Xilin River Basin of Inner Mongolia, China from June 2001 to June 2003, in parallel, the difference between the SR and the ecosystem respiration rates (TER) were compared. The results indicated that the seasonal variations of the SR and TER were obvious with higher emissions in growing season and a relatively low efflux level in non-growing season, furthermore, the negative effluxes were found in the observation site in winter; the annual CO2 efflux of total ecosystem ranged from 160.5 gC/(m^2·a) to 162.8 gC/(m^2·a) and that of soil ranged from 118.7 gC/(m^2·a) to 152.3 gC/(m^2·a). The annual SR accounted for about 74.0% to 93.5% of the annual TER, but the results of Analysis of Variance (ANOVA) indicated that the difference between the annual average TER and SR did not reach the significance level of 0.05. The TER was under similar environmental controls as SR, in growing seasons of drought years, the variations of soil moisture at 0-10 cm and 10-20 cm depth could account for 79,1% 95.6% of the changes of the SR and TER, but in non-growing season, more than 75% of the variations of the SR and TER could be explained by the changes of the ground temperature of soil surface layers. 展开更多
关键词 Inner Mongolia semiarid grassland Stipa grandis steppe CO2 fluxes environmental factors
下载PDF
Response of soil N_2O emissions to precipitation pulses under different nitrogen availabilities in a semiarid temperate steppe of Inner Mongolia, China 被引量:3
12
作者 XinChao LIU YuChun QI +5 位作者 YunShe DONG Qin PENG YaTing HE LiangJie SUN JunQiang JIA CongCong CAO 《Journal of Arid Land》 SCIE CSCD 2014年第4期410-422,共13页
Short-term nitrous oxide(N2O) pulse emissions caused by precipitation account for a considerable portion of the annual N2O emissions and are greatly influenced by soil nitrogen(N) dynamics. However, in Chinese sem... Short-term nitrous oxide(N2O) pulse emissions caused by precipitation account for a considerable portion of the annual N2O emissions and are greatly influenced by soil nitrogen(N) dynamics. However, in Chinese semiarid temperate steppes, the response of N2O emissions to the coupling changes of precipitation and soil N availability is not yet fully understood. In this study, we conducted two 7-day field experiments in a semiarid temperate typical steppe of Inner Mongolia, China, to investigate the N2O emission pulses resulting from artificial precipitation events(approximately equivalent to 10.0 mm rainfall) under four N addition levels(0, 5, 10 and 20 g N/(m2·a)) using the static opaque chamber technique. The results show that the simulated rainfall during the dry period in 2010 caused greater short-term emission bursts than that during the relatively rainy observation period in 2011(P〈0.05). No significant increase was observed for either the N2O peak effluxes or the weekly cumulative emissions(P〉0.05) with single water addition. The peak values of N2O efflux increased with the increasing N input. Only the treatments with water and medium(WN10) or high N addition(WN20) significantly increased the cumulative N2O emissions(P〈0.01) in both experimental periods. Under drought condition, the variations in soil N2O effluxes were positively correlated with the soil NH4-N concentrations in the three N input treatments(WN5, WN10, and WN20). Besides, the soil moisture and temperature also greatly influenced the N2O pulse emissions, particularly the N2O pulse under the relatively rainy soil condition or in the treatments without N addition(ZN and ZWN). The responses of the plant metabolism to the varying precipitation distribution and the length of drought period prior to rainfall could greatly affect the soil N dynamics and N2O emission pulses in semiarid grasslands. 展开更多
关键词 temperate semiarid steppe nitrous oxide nitrogen availability PRECIPITATION
下载PDF
An overview of the spatial patterns of land surface processes over arid and semiarid regions 被引量:6
13
作者 Jian Zeng Jie Shen Qiang Zhang 《Research in Cold and Arid Regions》 2010年第4期288-297,共10页
关键词 land surface radiation processes land surface energy processes spatial pattern arid and semiarid regions
下载PDF
Diurnal and seasonal dynamics of soil respiration in a Platycladus orientalis forest stand on the semiarid Loess Plateau, China 被引量:4
14
作者 SHI Wei-yu ZHANG Jian-guo +2 位作者 YAN Mei-jie GUAN Jin-hong DU Sheng 《地球环境学报》 2012年第6期1144-1148,共5页
Forest ecosystems on China's Loess Plateau are receiving increasing attention because of their special importance in carbon fixation and conservation of soil and water in the region.Soil respiration was investigat... Forest ecosystems on China's Loess Plateau are receiving increasing attention because of their special importance in carbon fixation and conservation of soil and water in the region.Soil respiration was investigated in Platycladus orientalis forest stands of the region at diurnal and seasonal scales.The daily and seasonal average values of soil respiration were 2.53μmol·m^(-2)·s^(-1)and 3.78μmol·m^(-2)·s^(-1),respectively.On a diurnal and seasonal scale,the variations of soil respiration in the P.orientalis forest show a one-peak pattern.The diurnal dynamics of soil respiration were mainly driven by soil temperature.However,the relationship between soil respiration and soil temperature was not significant,mainly because of the hysteresis effect of soil respiration on soil temperature.Soil moisture plays another dominant role in the ecosystem carbon balance,but was not affected by soil temperature in P.orientalis forest on the semiarid Loess Plateau. 展开更多
关键词 Loess Plateau Platycladus orientalis semiarid soil respiration
下载PDF
Spatial pattern of land cover change in China's semiarid environment 被引量:2
15
作者 BaoLin LI1 and QiMing ZHOU2 1 State Key Laboratory of Environment and Resources Information System, Institute of Geographical Sciences and Resources Research, Chinese Academy of Sciences, Beijing 100101, China 2 Department of Geography, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China 《Journal of Arid Land》 SCIE 2009年第1期16-25,共10页
This study seeks a routine to quantify spatial pattern of land cover changes in semiarid environment of China based on post-classification comparison method. The method consists of three major steps: (1) the image cla... This study seeks a routine to quantify spatial pattern of land cover changes in semiarid environment of China based on post-classification comparison method. The method consists of three major steps: (1) the image classification and unification of classified results based on two-level land cover classification themes, (2) the establishment of land cover change classes based on an unification land cover classification theme, (3) the reclassification and mapping of land cover change classes with three overall classes including no-change, gain and loss based on the unification land cover class. This method was applied to detect the spatial pattern of land cover changes in Yinchuan Plain, one of famous irrigation agricultural zones of the Yellow River, China. The results showed the land cover had undergone a remarkable change from 1991 to 2002 in the study area (the changed area was over 30%). Rapid increase of cropland (12.5%), built-up area (131.4%) and rapid decrease of bare ground (51.7%) were alarming. The spatial pattern of land cover changes showed clear regional difference in the study area and was clearly related to human activities or natural factors. Thus, it obtained a better understanding of the human impact on the fragile ecosystem of China’s semiarid environment. 展开更多
关键词 change detection spatial pattern land cover semiarid zone of China remote sensing human activities
下载PDF
Seasonal and Annual Variations of CO_2 Fluxes in Rain-Fed Winter Wheat Agro-Ecosystem of Loess Plateau, China 被引量:8
16
作者 WANG Wen LIAO Yun-cheng GUO Qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第1期147-158,共12页
To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement ... To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement of CO 2 fluxes in the rain-fed winter wheat field of the Chinese Loess Plateau. The results showed that the annual net ecosystem CO 2 exchange (NEE) was (-71.6±5.7) and (-65.3±5.3) g C m-2 y-1 for 2008-2009 and 2009-2010 crop years, respectively, suggesting that the agro-ecosystem was a carbon sink (117.4-126.2 g C m-2 yr-1). However, after considering the harvested grain, the agro- ecosystem turned into a moderate carbon source. The variations in NEE and ecosystem respiration (R eco ) were sensitive to changes in soil water content (SWC). When SWC ranged form 0.15 to 0.21 m3 m-3, we found a highly significant relationship between NEE and photosynthetically active radiation (PAR), and a highly significant relationship between R eco and soil temperature (T s ). However, the highly significant relationships were not observed when SWC was outside the range of 0.15-0.21 m3 m-3. Further, in spring, the R eco instantly responded to a rapid increase in SWC after effective rainfall events, which could induce 2 to 4-fold increase in daily R eco , whereas the R eco was also inhibited by heavy summer rainfall when soils were saturated. Accumulated R eco in summer fallow period decreased carbon fixed in growing season by 16- 25%, indicating that the period imposed negative impacts on annual carbon sequestration. 展开更多
关键词 CO 2 flux carbon sequestration soil water content rainfall event rain-fed winter wheat agro-ecosystem
下载PDF
Climate Change, Adaptive Strategies and Rural Livelihoods in Semiarid Tanzania 被引量:3
17
作者 Richard Y. M. Kangalawe James G. Lyimo 《Natural Resources》 2013年第3期266-278,共13页
Climate change is a global challenge to both sustainable livelihoods and economic development. In Tanzania as in most African countries, farming depends almost entirely on rainfall, a situation that makes agriculture ... Climate change is a global challenge to both sustainable livelihoods and economic development. In Tanzania as in most African countries, farming depends almost entirely on rainfall, a situation that makes agriculture and thus rural livelihoods especially in semiarid environments particularly vulnerable to climate change. This study analyses the impacts of climate change and variability on rural livelihoods with particular focus on agricultural production, food security and adaptive capacities in semiarid areas of Tanzania. The methods used in this study included focus group discussions, key informant interviews, household surveys and field observations. Results from the study indicate that communities understood climate change in terms of variability in rainfall patterns and amount, temperature patterns, wind, water availability, increased incidences of drought and decreased agricultural productivity. Communities in the study area acknowledged that while rainfall amounts have decreased over the last thirty years, temperatures have increased;an experience is also supported by meteorological data. Such changes were claimed to have reduced agricultural productivity particularly due to prolonged drought, inadequate and uneven distribution of rainfall as well as unpredictable onset and ending of rains. Stressors such as crop diseases and pests, low soil fertility and inadequate extension services were also reported to contribute to the decline in agricultural productivity and re-occurrence of food insecurity. In response, communities have developed multiple adaptation strategies, including growing of drought tolerant and early maturing crop varieties, increasing wetlands cultivation, water harvesting for small-scale irrigation and livestock keeping. However, households with limited livelihood assets are more vulnerable to the impacts of climate change and food insecurity. The study argues that diversification of adaptive strategies, such as water harvesting for small-scale irrigation, integration of livestock and crop production are crucial to ensuring sustainable livelihood in a changing climate. 展开更多
关键词 CLIMATE Change Adaptive Strategies FOOD INSECURITY RURAL Livelihoods semiarid Tanzania
下载PDF
Spatio-temporal Variations of Temperature and Precipitation During 1951–2019 in Arid and Semiarid Region, China 被引量:2
18
作者 HUANG Yufei LU Chunyan +3 位作者 LEI Yifan SU Yue SU Yanlin WANG Zili 《Chinese Geographical Science》 SCIE CSCD 2022年第2期285-301,共17页
Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-makin... Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses. 展开更多
关键词 multi-source remote sensing data TEMPERATURE PRECIPITATION arid and semiarid region spatio-temporal variation atmospheric circulation
下载PDF
Response of density-related fine root production to soil and leaf traits in coniferous and broad-leaved plantations in the semiarid loess hilly region of China 被引量:1
19
作者 Meimei Sun Bo-Chao Zhai +2 位作者 Qiu-Wen Chen Guoqing Li Sheng Du 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第3期1071-1082,共12页
Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information... Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information on changes in fine roots along a density gradient is limited. In this study, plantations of black locust (Robinia pseudoacacia L.) and Chinese pine (Pinus tabuliformis Carr.) with four density classes were analyzed for the influence of soil and leaf traits on fine root growth. Fine root biomass increased with stand density. High fine root biomass was achieved through increases in the fine root production and turnover rate in the high-density black locust plantations and through an increase in fine root production in the pine plantations. In the high-density Chinese pine stand, there was a high fine root turnover which, coupled with high fine root production, contributed to a high fine root biomass. Overall, fine root production and turnover rate were closely related to soil volumetric water content in both kinds of plantations, while fine root biomass, especially the component of necromass, was related to soil nutrient status, which refers to phosphorous content in black locust plantations and nitrogen content in Chinese pine plantations. There was a close linkage between leaf area index and fine root dynamics in the black locust plantations but not in the pine plantations. 展开更多
关键词 Fine roots Black locust Chinese pine semiarid Soil moisture Leaf area index
下载PDF
Processes of runoff in seasonally-frozen ground about a forested catchment of semiarid mountains 被引量:1
20
作者 PengFei Lin ZhiBin He +3 位作者 Jun Du LongFei Chen Xi Zhu QuanYan Tian 《Research in Cold and Arid Regions》 CSCD 2020年第5期272-283,共12页
Climate warming increases the variability in runoff of semiarid mountains where seasonally-frozen ground is widely distributed.However,what is not well understood are the processes of runoff,hydrological drivers,and f... Climate warming increases the variability in runoff of semiarid mountains where seasonally-frozen ground is widely distributed.However,what is not well understood are the processes of runoff,hydrological drivers,and freeze-thaw cycles in seasonally-frozen ground in semiarid mountains.To understand how freeze-thaw cycles affect runoff processes in seasonally-frozen ground,we monitored hydrological processes in a typical headwater catchment with seasonally-frozen ground in Qilian Mountain,China,from 2002 to 2017.We analyzed the responses of runoff to temperature,precipitation,and seasonally-frozen ground to quantify process characteristics and driving factors.The results show that annual runoff was 88.5 mm accounting for 25.6%of rainfall,mainly concentrated in May to October,with baseflow of 36.44 mm.Peak runoff occurred in June,August,and September,i.e.,accounting for spring and summer floods.Runoff during the spring flood was produced by a mix of rainfall,melting snow,and melting seasonally-frozen ground,and had a significant correlation with air temperature.Runoff was mainly due to precipitation accumulation during the summer flood.Air temperature,average soil temperature at 0−50 cm depth,and frozen soil depth variable explained 59.60%of the variation of runoff in the thawing period,while precipitation variable explained 21.9%.Thawing-period runoff and soil temperature had a>0.6 correlation coefficient(P<0.05).In the rainfall-period,runoff was also affected by temperature,soil moisture,and precipitation,which explained 33.6%,34.1%and 18.1%,respectively.Our results show that increasing temperature and precipitation will have an irreversible impact on the hydrological regime in mountainous basins where seasonally-frozen ground is widely distributed. 展开更多
关键词 RUNOFF seasonally-frozen ground semiarid mountains Northeast margin of Tibetan Plateau
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部