The good potentiality of the In_2O_3 anodic film as a photoanodic material has been demonstrated.The anodic oxidation of In substrate in alkaline solution for obtaining In_2O_3 film has been developed and their semico...The good potentiality of the In_2O_3 anodic film as a photoanodic material has been demonstrated.The anodic oxidation of In substrate in alkaline solution for obtaining In_2O_3 film has been developed and their semiconducting properties have been investigated through capacitance, photoelectrochemistry and electroreflection measurements.展开更多
Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. Blend films were usuall...Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. Blend films were usually deposited from solution, during which phase separation oc- curred, resulting in discrete semiconducting phase whose electrical property was modulated by surrounding ferroelectric phase. However, phase separation resulted in rough surface and thus large leakage current. To further improve electrical properties of such blend films, poly(methyl metacrylate) (PMMA) was introduced as additive into P3HT/P(VDF-TrFE) semiconducting/ferroelectric blend films in this work. It indicated that small amount of PMMA addition could effectively enhance the electrical stability to both large electrical stress and electrical fatigue and further improve retention performance. Overmuch PMMA addition tended to result in the loss of resistive switching property. A model on the configuration of three components was also put forward to well understand our experimental observations.展开更多
In comparison to inorganic counterparts,organic semiconducting(OSC)crystalline films are promising for building large-area and flexible ionizing radiation detectors for X-ray imaging or dosimetry due to their tissue e...In comparison to inorganic counterparts,organic semiconducting(OSC)crystalline films are promising for building large-area and flexible ionizing radiation detectors for X-ray imaging or dosimetry due to their tissue equivalence,simple processing and large-scale production accessibility.Fabrication processes,how-ever,hinder the ability to generate aligned and large-area films with high carrier mobility.In this work,the space-confined melt process is used to produce highly orientated 4HCB(4-hydroxycyanobenzene)OSC films with a large area of 15×18 mm^(2).The out-of-plane direction of the 4HCB film is<001>,and the benzene rings are found to be extensively overlapped inside the in-plane direction,according to the XRD patterns.The film exhibits a high resistivity up to 1012cm,and high hole mobility of 10.62 cm^(2)V^(−1)s^(−1).Furthermore,the 4HCB(80μm-thick film)based X-ray detectors can achieve a sensitivity of 93μC Gy air^(−1) cm^(−2)and on/offratio of 157.The device also shows steady flexibility,with no degradation in detecting function after 100 cycles of bending.Finally,the proposed 4HCB film detectors demonstrated a high-resolution X-ray imaging capability.The imaging of several materials with sharp edges(copper and polytetrafluoroethylene)has been obtained.This work has developed a fast but efficient approach for producing large-area,highly oriented OSC films for high-performance X-ray detectors.展开更多
A novel broadband transmission method to determine polymer film thickness during manufacturing is pro- posed, and a measurement system is developed based on this method. The relationship between broadband optical powe...A novel broadband transmission method to determine polymer film thickness during manufacturing is pro- posed, and a measurement system is developed based on this method. The relationship between broadband optical power and film thickness is deduced according to the Lambert-Beer law. The system is composed of a halogen light and an optical power meter. Results show that the measurement error of this method is approximately 1 tim, and the resolution of the system is below 0.4 μm for polymer films with less than 100-μm thickness.展开更多
Due to its remarkable electrical and optical capabilities,optoelectronic devices based on the semiconducting single-walled carbon nanotube(s-SWCNT)have been studied extensively in the last two decades.First,s-SWCNT is...Due to its remarkable electrical and optical capabilities,optoelectronic devices based on the semiconducting single-walled carbon nanotube(s-SWCNT)have been studied extensively in the last two decades.First,s-SWCNT is a direct bandgap semiconductor with a high infrared absorption coefficient and high electron/hole mobility.In addition,as a typical one-dimensional material,there is no lattice mismatch between s-SWCNT and any substrates.Another advantage is that the optoelectronic devices of s-SWCNT can be processed at low temperatures.s-SWCNT has intriguing potential and applications in solar cells,light-emitting diodes(LEDs),photodetectors,and three-dimensional(3D)optoelectronic integration.In recent years,along with the advancement of solution purification technology,the high-purity s-SWCNTs film has laid the foundation for constructing large-area,homogenous,and high-performance optoelectronic devices.In this review,optoelectronic devices based on s-SWCNTs film and related topics are reviewed,including the preparation of high purity s-SWCNTs film,the progress of photodetectors based on the s-SWCNTs film,and challenges of s-SWCNTs film photodetectors.展开更多
文摘The good potentiality of the In_2O_3 anodic film as a photoanodic material has been demonstrated.The anodic oxidation of In substrate in alkaline solution for obtaining In_2O_3 film has been developed and their semiconducting properties have been investigated through capacitance, photoelectrochemistry and electroreflection measurements.
基金This work was supported by the STCSM (No.13NMI400600) and the National Natural Science Foundation of China (No.U1430106).
文摘Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. Blend films were usually deposited from solution, during which phase separation oc- curred, resulting in discrete semiconducting phase whose electrical property was modulated by surrounding ferroelectric phase. However, phase separation resulted in rough surface and thus large leakage current. To further improve electrical properties of such blend films, poly(methyl metacrylate) (PMMA) was introduced as additive into P3HT/P(VDF-TrFE) semiconducting/ferroelectric blend films in this work. It indicated that small amount of PMMA addition could effectively enhance the electrical stability to both large electrical stress and electrical fatigue and further improve retention performance. Overmuch PMMA addition tended to result in the loss of resistive switching property. A model on the configuration of three components was also put forward to well understand our experimental observations.
基金This work was supported by the National Natural Science Foundations of China(Nos.U2032170,51872228,62104194 and 51802262)The project was also supported by the Fundamental Research Funds for the Central University(3102020QD0408 and D5000210906)+1 种基金the Natural Science Foundation of Shaanxi Province(2020JC-12)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2022-TS-07).
文摘In comparison to inorganic counterparts,organic semiconducting(OSC)crystalline films are promising for building large-area and flexible ionizing radiation detectors for X-ray imaging or dosimetry due to their tissue equivalence,simple processing and large-scale production accessibility.Fabrication processes,how-ever,hinder the ability to generate aligned and large-area films with high carrier mobility.In this work,the space-confined melt process is used to produce highly orientated 4HCB(4-hydroxycyanobenzene)OSC films with a large area of 15×18 mm^(2).The out-of-plane direction of the 4HCB film is<001>,and the benzene rings are found to be extensively overlapped inside the in-plane direction,according to the XRD patterns.The film exhibits a high resistivity up to 1012cm,and high hole mobility of 10.62 cm^(2)V^(−1)s^(−1).Furthermore,the 4HCB(80μm-thick film)based X-ray detectors can achieve a sensitivity of 93μC Gy air^(−1) cm^(−2)and on/offratio of 157.The device also shows steady flexibility,with no degradation in detecting function after 100 cycles of bending.Finally,the proposed 4HCB film detectors demonstrated a high-resolution X-ray imaging capability.The imaging of several materials with sharp edges(copper and polytetrafluoroethylene)has been obtained.This work has developed a fast but efficient approach for producing large-area,highly oriented OSC films for high-performance X-ray detectors.
基金supported by the National Natural Science Foundation of China under Grant No.61071036
文摘A novel broadband transmission method to determine polymer film thickness during manufacturing is pro- posed, and a measurement system is developed based on this method. The relationship between broadband optical power and film thickness is deduced according to the Lambert-Beer law. The system is composed of a halogen light and an optical power meter. Results show that the measurement error of this method is approximately 1 tim, and the resolution of the system is below 0.4 μm for polymer films with less than 100-μm thickness.
基金This work was supported by the National Key Research&Development Program(No.2020YFA0714703)National Science Foundation of China(Nos.62071008 and U21A6004)Ji Hua Laboratory(No.2021B0301030003).
文摘Due to its remarkable electrical and optical capabilities,optoelectronic devices based on the semiconducting single-walled carbon nanotube(s-SWCNT)have been studied extensively in the last two decades.First,s-SWCNT is a direct bandgap semiconductor with a high infrared absorption coefficient and high electron/hole mobility.In addition,as a typical one-dimensional material,there is no lattice mismatch between s-SWCNT and any substrates.Another advantage is that the optoelectronic devices of s-SWCNT can be processed at low temperatures.s-SWCNT has intriguing potential and applications in solar cells,light-emitting diodes(LEDs),photodetectors,and three-dimensional(3D)optoelectronic integration.In recent years,along with the advancement of solution purification technology,the high-purity s-SWCNTs film has laid the foundation for constructing large-area,homogenous,and high-performance optoelectronic devices.In this review,optoelectronic devices based on s-SWCNTs film and related topics are reviewed,including the preparation of high purity s-SWCNTs film,the progress of photodetectors based on the s-SWCNTs film,and challenges of s-SWCNTs film photodetectors.