The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plastici...The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer.展开更多
The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels ...The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time.展开更多
Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing pa...Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing parameters. Instead, high technology compact slab production plant offers economic advantages, adequate control and prompt use of the advanced thermomechanical controlled rolling. The current work aims to obtain different structures and tensile properties by physical simulation of direct hot rolled niobium micro alloyed dual phase low carbon steel by varying the metallurgical temperatures of hot strip mill plant. This starts with adaptation of the chemical analysis of a low carbon content to fall far from the undesired peritectic region to avoid slab cracking during casting. Thermodynamic and kinetics calculations by Thermo-Calc 2020 and JMat pro software are used to define the transformation’s temperatures Ae1 and Ae3 as well as processing temperatures;namely of reheating, finishing rolling, step cooling and coiling temperatures. The results show that the increase of finishing rolling temperature from 780<span style="white-space:nowrap;">°</span>C to 840<span style="white-space:nowrap;">°</span>C or decreasing either of step cooling duration at ferrite bay from 7 to 4 seconds, enhances yield and tensile strengths, all due to more martensite volume fraction formation. The yield and tensile strengths also increase with decreasing coiling temperature from 330<span style="white-space:nowrap;">°</span>C to 180<span style="white-space:nowrap;">°</span>C, which is explained due to the increase of dislocation densities resulted from the sudden shape change during martensite formation at the lower coiling temperature in additional to the self-tempering of martensite formed at higher coiling temperatures which soften the dual phase steel.展开更多
Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and th...Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and the bainite fraction (fB) increases with increasing Nb content (Nb). The effect of ferrite grain size (dF) on yield strength (δy) is related to Nb content (Nb), and the effect of bainite fraction (fB) on yield strength (δy) is unrelated to Nb content (Nb). Modelling of yield strength (δy) for Nb micro-alloyed steels with high accuracy has been built up with Nb content (Nb) and bainite fraction (fB) taken into account as new parameters, and formulas for ferrite grain size (dF ) and bainite fraction (fB) vs Nb content (Nb) have also been established under the experiment conditions. The research results could provide instructions for industrial productions.展开更多
为提高热轧态0Cr21A16合金板材的组织均匀性和塑性,以改善其高温性能及冷加工特性,分析研究了不同温度的热处理试验及组织性能。采用光学显微镜、X射线衍射仪、Gleeble高温热拉伸实验、扫描电镜和纳米压痕仪等研究了热处理前后0Cr21Al6...为提高热轧态0Cr21A16合金板材的组织均匀性和塑性,以改善其高温性能及冷加工特性,分析研究了不同温度的热处理试验及组织性能。采用光学显微镜、X射线衍射仪、Gleeble高温热拉伸实验、扫描电镜和纳米压痕仪等研究了热处理前后0Cr21Al6合金板材的显微组织和力学性能。结果表明,通过热处理的方式改善0Cr21Al6合金板材的组织均匀性,在960℃保温6 min 40 s后快速冷却,晶粒平均尺寸为42μm,整体的晶粒尺寸相对于940、980、1000、1020℃热处理后较为均匀、细小,硬度和塑性达到最佳匹配,断裂韧度KIC在960℃处理下达到最佳,拥有最佳的综合性能,可有效避免生产过程中材料的脆性断裂问题。另外Gleeble实验显示1000℃以上的热处理温度不再适合于热加工。展开更多
The effect of alloy segregation and delta (δ) ferrite contents on surface cracking of three standard (i.e. AISI 304L, AISI 310S and AISI 321) and two low nickel (i.e. LNi-1 and LNi-0.3) austenitic stainless ste...The effect of alloy segregation and delta (δ) ferrite contents on surface cracking of three standard (i.e. AISI 304L, AISI 310S and AISI 321) and two low nickel (i.e. LNi-1 and LNi-0.3) austenitic stainless steels (ASS) during hot roiling was investigated using optical microscopy (OM), automatic image analyzer, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electron probe micro analyzer (EPMA). It was observed that the amount of 6-ferrite varied among different grades and also distributed heterogeneously across the width of the steel plates. In general, low nickel ASS showed higher amount of 6-ferrite compared to the standard ASS grades. The tendency to surface cracking during hot rolling gradually increased with increasing 6-ferrite content. Interestingly, carbon and nitrogen exerted maximum effect on 6-ferrite formation. The higher carbon and nitrogen content in the steel decreased 6-ferMte content. In addition, the segregation of Cu and Mn plays significant role in low nickel ASS and Ni-Cr in case of standard ASS has profound effect on surface cracking of the steel plates. A possible cause of surface crack formation/origination in steel plates during hot rolling was discussed.展开更多
A new hot-dip galvanizing method was employed on hot-rolled low carbon steel.The effects of Al contents on microstructure,micro-hardness and corrosion resistance of Zn-Al alloy coatings were systematically investigate...A new hot-dip galvanizing method was employed on hot-rolled low carbon steel.The effects of Al contents on microstructure,micro-hardness and corrosion resistance of Zn-Al alloy coatings were systematically investigated.Phase composition,microstructure and element distribution in Zn-Al alloy coatings were analyzed using X-ray diffraction(XRD)and electron probe micro analysis(EPMA),respectively.It is found that Al content(0.6-6.0 wt.%)in galvanizing zinc affects surface quality and adhesion between coatings and matrix in the newly developed method.In addition,with increasing Al content,micro-hardness significantly increased due to the increase in Zn-Al eutectoid phases.Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)also revealed that increase in Al plays a noticeable role in improving the corrosion resistance of Zn-Al alloy coatings.展开更多
基金Project(AWPT-M07)supported by State Key Laboratory of Advanced Welding and Joining,ChinaProject(20120041120015)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer.
基金Project(AWPT-M07)supported by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology
文摘The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time.
文摘Direct hot rolled dual phase steel production represents a challenging route, compared with cold rolled and intercritical annealing process, due to complex and sophisticated control of the hot strip mill processing parameters. Instead, high technology compact slab production plant offers economic advantages, adequate control and prompt use of the advanced thermomechanical controlled rolling. The current work aims to obtain different structures and tensile properties by physical simulation of direct hot rolled niobium micro alloyed dual phase low carbon steel by varying the metallurgical temperatures of hot strip mill plant. This starts with adaptation of the chemical analysis of a low carbon content to fall far from the undesired peritectic region to avoid slab cracking during casting. Thermodynamic and kinetics calculations by Thermo-Calc 2020 and JMat pro software are used to define the transformation’s temperatures Ae1 and Ae3 as well as processing temperatures;namely of reheating, finishing rolling, step cooling and coiling temperatures. The results show that the increase of finishing rolling temperature from 780<span style="white-space:nowrap;">°</span>C to 840<span style="white-space:nowrap;">°</span>C or decreasing either of step cooling duration at ferrite bay from 7 to 4 seconds, enhances yield and tensile strengths, all due to more martensite volume fraction formation. The yield and tensile strengths also increase with decreasing coiling temperature from 330<span style="white-space:nowrap;">°</span>C to 180<span style="white-space:nowrap;">°</span>C, which is explained due to the increase of dislocation densities resulted from the sudden shape change during martensite formation at the lower coiling temperature in additional to the self-tempering of martensite formed at higher coiling temperatures which soften the dual phase steel.
文摘Microstructures and properties of three Nb micro-alloyed steels were studied through hot rolling experiment. The result indicates that the ferrite grain size (dF ) decreases with increasing Nb content (Nb), and the bainite fraction (fB) increases with increasing Nb content (Nb). The effect of ferrite grain size (dF) on yield strength (δy) is related to Nb content (Nb), and the effect of bainite fraction (fB) on yield strength (δy) is unrelated to Nb content (Nb). Modelling of yield strength (δy) for Nb micro-alloyed steels with high accuracy has been built up with Nb content (Nb) and bainite fraction (fB) taken into account as new parameters, and formulas for ferrite grain size (dF ) and bainite fraction (fB) vs Nb content (Nb) have also been established under the experiment conditions. The research results could provide instructions for industrial productions.
文摘为提高热轧态0Cr21A16合金板材的组织均匀性和塑性,以改善其高温性能及冷加工特性,分析研究了不同温度的热处理试验及组织性能。采用光学显微镜、X射线衍射仪、Gleeble高温热拉伸实验、扫描电镜和纳米压痕仪等研究了热处理前后0Cr21Al6合金板材的显微组织和力学性能。结果表明,通过热处理的方式改善0Cr21Al6合金板材的组织均匀性,在960℃保温6 min 40 s后快速冷却,晶粒平均尺寸为42μm,整体的晶粒尺寸相对于940、980、1000、1020℃热处理后较为均匀、细小,硬度和塑性达到最佳匹配,断裂韧度KIC在960℃处理下达到最佳,拥有最佳的综合性能,可有效避免生产过程中材料的脆性断裂问题。另外Gleeble实验显示1000℃以上的热处理温度不再适合于热加工。
文摘The effect of alloy segregation and delta (δ) ferrite contents on surface cracking of three standard (i.e. AISI 304L, AISI 310S and AISI 321) and two low nickel (i.e. LNi-1 and LNi-0.3) austenitic stainless steels (ASS) during hot roiling was investigated using optical microscopy (OM), automatic image analyzer, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electron probe micro analyzer (EPMA). It was observed that the amount of 6-ferrite varied among different grades and also distributed heterogeneously across the width of the steel plates. In general, low nickel ASS showed higher amount of 6-ferrite compared to the standard ASS grades. The tendency to surface cracking during hot rolling gradually increased with increasing 6-ferrite content. Interestingly, carbon and nitrogen exerted maximum effect on 6-ferrite formation. The higher carbon and nitrogen content in the steel decreased 6-ferMte content. In addition, the segregation of Cu and Mn plays significant role in low nickel ASS and Ni-Cr in case of standard ASS has profound effect on surface cracking of the steel plates. A possible cause of surface crack formation/origination in steel plates during hot rolling was discussed.
基金the National Science and Technology Pillar Program of China (2011BAE13B04)National Natural Science Foundation of China(51204047and U1660117)Fundamental Research Funds for the Central Universi-ties of China(N130407004)for the financial support
文摘A new hot-dip galvanizing method was employed on hot-rolled low carbon steel.The effects of Al contents on microstructure,micro-hardness and corrosion resistance of Zn-Al alloy coatings were systematically investigated.Phase composition,microstructure and element distribution in Zn-Al alloy coatings were analyzed using X-ray diffraction(XRD)and electron probe micro analysis(EPMA),respectively.It is found that Al content(0.6-6.0 wt.%)in galvanizing zinc affects surface quality and adhesion between coatings and matrix in the newly developed method.In addition,with increasing Al content,micro-hardness significantly increased due to the increase in Zn-Al eutectoid phases.Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)also revealed that increase in Al plays a noticeable role in improving the corrosion resistance of Zn-Al alloy coatings.