This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s...Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.展开更多
With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is ...With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.展开更多
With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)...With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.展开更多
Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate resul...Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.展开更多
The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connec...The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond.展开更多
Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck s...Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck stops are the only places for the trucks to stop legally and safely. In locations without sufficient parking areas, trucks often park on interstate ramps, which create safety risks for other interstate motorists. Historically, agencies have employed costly and time intensive manual counting methods, camera surveillance, and driver surveys to assess truck parking. Connected truck data, available in near real-time, offers an efficient alternative to practitioners to assess truck parking patterns and identify areas where there may be insufficient safe parking spaces. This paper presents a case study of interstate I-70 in east central Indiana and documents the observed spatiotemporal impacts of a rest area closure on truck parking on nearby interstate ramps. Results showed that there was a 28% increase in parking on ramps during the rest area closure. Analysis also found that ramps closest to the rest area were most impacted by the closure, seeing a rise in truck parking sessions as high as 2.7 times. Parking duration on the ramps during rest area closure also increased drastically. Although it was expected that this would result in increased parking by trucks on adjacent ramps, this before, during, after scenario provided an ideal scenario to evaluate the robustness of these techniques to assess changing parking characteristics of long-haul commercial trucks. The data analytics and visualization tools presented in this study are scalable nationwide and will aid stakeholders in informed data-driven decision making when allocating resources towards improving the nations commercial vehicle parking infrastructure.展开更多
The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid reg...The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.展开更多
In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network techno...In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.展开更多
A new microreactor with continuous serially connected micromixers(CSCM)was tailored for the coprecipitation process to synthesize Fe_(3)O_(4) nanoparticles.Numerical simulation reveals that the two types of CSCM micro...A new microreactor with continuous serially connected micromixers(CSCM)was tailored for the coprecipitation process to synthesize Fe_(3)O_(4) nanoparticles.Numerical simulation reveals that the two types of CSCM microchannels(V-typed and U-typed)proposed in this work exhibited markedly better mixing performances than the Zigzag and capillary microchannels due to the promotion of Dean vortices.Complete mixing was achieved in the V-typed microchannel in 2.7 s at an inlet Reynolds number of 27.Fe_(3)O_(4) nanoparticles synthesized in a planar glass microreactor with the V-typed microchannel,possessing an average size of 9.3 nm and exhibiting superparamagnetism,had obviously better dispersity and uniformity and higher crystallinity than those obtained in the capillary microreactor.The new CSCM microreactor developed in this work can act as a potent device to intensify the synthesis of similar inorganic nanoparticles via multistep chemical precipitation processes.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
To guarantee the safety of railway operations,the swift detection of rail surface defects becomes imperative.Traditional methods of manual inspection and conventional nondestructive testing prove inefficient,especiall...To guarantee the safety of railway operations,the swift detection of rail surface defects becomes imperative.Traditional methods of manual inspection and conventional nondestructive testing prove inefficient,especially when scaling to extensive railway networks.Moreover,the unpredictable and intricate nature of defect edge shapes further complicates detection efforts.Addressing these challenges,this paper introduces an enhanced Unified Perceptual Parsing for Scene Understanding Network(UPerNet)tailored for rail surface defect detection.Notably,the Swin Transformer Tiny version(Swin-T)network,underpinned by the Transformer architecture,is employed for adept feature extraction.This approach capitalizes on the global information present in the image and sidesteps the issue of inductive preference.The model’s efficiency is further amplified by the windowbased self-attention,which minimizes the model’s parameter count.We implement the cross-GPU synchronized batch normalization(SyncBN)for gradient optimization and integrate the Lovász-hinge loss function to leverage pixel dependency relationships.Experimental evaluations underscore the efficacy of our improved UPerNet,with results demonstrating Pixel Accuracy(PA)scores of 91.39%and 93.35%,Intersection over Union(IoU)values of 83.69%and 87.58%,Dice Coefficients of 91.12%and 93.38%,and Precision metrics of 90.85%and 93.41%across two distinct datasets.An increment in detection accuracy was discernible.For further practical applicability,we deploy semantic segmentation of rail surface defects,leveraging connected component processing techniques to distinguish varied defects within the same frame.By computing the actual defect length and area,our deep learning methodology presents results that offer intuitive insights for railway maintenance professionals.展开更多
The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for...The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.展开更多
Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicl...Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.展开更多
In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distanc...In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension.展开更多
Membrane contact sites (MCS) occur between closely apposed organelles and are a means to transport ions and macromolecules between themselves,co-ordinate cellular metabolism,and direct organelle fission and transport....Membrane contact sites (MCS) occur between closely apposed organelles and are a means to transport ions and macromolecules between themselves,co-ordinate cellular metabolism,and direct organelle fission and transport.While MCS between the endoplasmic reticulum (ER)and mitochondria has long been investigated。展开更多
Digital twin is an essential enabling technology for 6G connected vehicles.Through highfidelity mobility simulation,digital twin is expected to make accurate prediction about the vehicle trajectory,and then support in...Digital twin is an essential enabling technology for 6G connected vehicles.Through highfidelity mobility simulation,digital twin is expected to make accurate prediction about the vehicle trajectory,and then support intelligent applications such as safety monitoring and self-driving for connected vehicles.However,it is observed that even if a digital twin model is perfectly derived,it might still fail to predict the trajectory due to tiny measurement noise or delay in the initial vehicle locations.This paper aims at investigating the sources of unpredictability of digital twin.Take the car-following behaviors in connected vehicles for case study.The theoretical analysis and experimental results indicate that the predictability of digital twin naturally depends on its system complexity.Once a system enters a complex pattern,its longterm states are unpredictable.Furthermore,our study discloses that the complexity is determined,on the one hand,by the intrinsic factors of the target physical system such as the driver’s response sensitivity and delay,and on the other hand,by the crucial parameters of the digital twin system such as the sampling interval and twining latency.展开更多
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金supported by the Natural Science Foundation of Shanghai Municipality(21ZR1423400)the National Natural Science Funds of China(62173217)NSFC/Royal Society Cooperation and Exchange Project(62111530154,IEC\NSFC\201107).
文摘Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3103200).
文摘With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.
基金supported by the National Natural Science Foundation of China(Grant No.62072031)the Applied Basic Research Foundation of Yunnan Province(Grant No.2019FD071)the Yunnan Scientific Research Foundation Project(Grant 2019J0187).
文摘With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.
基金This research is partially supported by grant from the National Natural Science Foundation of China(No.72071019)grant from the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0185)grant from the Chongqing Graduate Education and Teaching Reform Research Project(No.yjg193096).
文摘Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.
文摘The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond.
文摘Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck stops are the only places for the trucks to stop legally and safely. In locations without sufficient parking areas, trucks often park on interstate ramps, which create safety risks for other interstate motorists. Historically, agencies have employed costly and time intensive manual counting methods, camera surveillance, and driver surveys to assess truck parking. Connected truck data, available in near real-time, offers an efficient alternative to practitioners to assess truck parking patterns and identify areas where there may be insufficient safe parking spaces. This paper presents a case study of interstate I-70 in east central Indiana and documents the observed spatiotemporal impacts of a rest area closure on truck parking on nearby interstate ramps. Results showed that there was a 28% increase in parking on ramps during the rest area closure. Analysis also found that ramps closest to the rest area were most impacted by the closure, seeing a rise in truck parking sessions as high as 2.7 times. Parking duration on the ramps during rest area closure also increased drastically. Although it was expected that this would result in increased parking by trucks on adjacent ramps, this before, during, after scenario provided an ideal scenario to evaluate the robustness of these techniques to assess changing parking characteristics of long-haul commercial trucks. The data analytics and visualization tools presented in this study are scalable nationwide and will aid stakeholders in informed data-driven decision making when allocating resources towards improving the nations commercial vehicle parking infrastructure.
基金supported by National Natural Science Foundation of China(Project No.52077079).
文摘The merits of compressed air energy storage(CAES)include large power generation capacity,long service life,and environmental safety.When a CAES plant is switched to the grid-connected mode and participates in grid regulation,using the traditional control mode with low accuracy can result in excess grid-connected impulse current and junction voltage.This occurs because the CAES output voltage does not match the frequency,amplitude,and phase of the power grid voltage.Therefore,an adaptive linear active disturbance-rejection control(A-LADRC)strategy was proposed.Based on the LADRC strategy,which is more accurate than the traditional proportional integral controller,the proposed controller is enhanced to allow adaptive adjustment of bandwidth parameters,resulting in improved accuracy and response speed.The problem of large impulse current when CAES is switched to the grid-connected mode is addressed,and the frequency fluctuation is reduced.Finally,the effectiveness of the proposed strategy in reducing the impact of CAES on the grid connection was verified using a hardware-in-the-loop simulation platform.The influence of the k value in the adaptive-adjustment formula on the A-LADRC was analyzed through simulation.The anti-interference performance of the control was verified by increasing and decreasing the load during the presynchronization process.
文摘In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.
基金the financial support from the National Natural Science Foundation of China(21808059)the Fundamental Research Funds for the Central Universities(JKA01221712).
文摘A new microreactor with continuous serially connected micromixers(CSCM)was tailored for the coprecipitation process to synthesize Fe_(3)O_(4) nanoparticles.Numerical simulation reveals that the two types of CSCM microchannels(V-typed and U-typed)proposed in this work exhibited markedly better mixing performances than the Zigzag and capillary microchannels due to the promotion of Dean vortices.Complete mixing was achieved in the V-typed microchannel in 2.7 s at an inlet Reynolds number of 27.Fe_(3)O_(4) nanoparticles synthesized in a planar glass microreactor with the V-typed microchannel,possessing an average size of 9.3 nm and exhibiting superparamagnetism,had obviously better dispersity and uniformity and higher crystallinity than those obtained in the capillary microreactor.The new CSCM microreactor developed in this work can act as a potent device to intensify the synthesis of similar inorganic nanoparticles via multistep chemical precipitation processes.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.
基金supported in part by the National Natural Science Foundation of China(Grant No.62066024)Gansu Province Higher Education Industry Support Plan(2021CYZC34)Lanzhou Talent Innovation and Entrepreneurship Project(2021-RC-27,2021-RC-45).
文摘To guarantee the safety of railway operations,the swift detection of rail surface defects becomes imperative.Traditional methods of manual inspection and conventional nondestructive testing prove inefficient,especially when scaling to extensive railway networks.Moreover,the unpredictable and intricate nature of defect edge shapes further complicates detection efforts.Addressing these challenges,this paper introduces an enhanced Unified Perceptual Parsing for Scene Understanding Network(UPerNet)tailored for rail surface defect detection.Notably,the Swin Transformer Tiny version(Swin-T)network,underpinned by the Transformer architecture,is employed for adept feature extraction.This approach capitalizes on the global information present in the image and sidesteps the issue of inductive preference.The model’s efficiency is further amplified by the windowbased self-attention,which minimizes the model’s parameter count.We implement the cross-GPU synchronized batch normalization(SyncBN)for gradient optimization and integrate the Lovász-hinge loss function to leverage pixel dependency relationships.Experimental evaluations underscore the efficacy of our improved UPerNet,with results demonstrating Pixel Accuracy(PA)scores of 91.39%and 93.35%,Intersection over Union(IoU)values of 83.69%and 87.58%,Dice Coefficients of 91.12%and 93.38%,and Precision metrics of 90.85%and 93.41%across two distinct datasets.An increment in detection accuracy was discernible.For further practical applicability,we deploy semantic segmentation of rail surface defects,leveraging connected component processing techniques to distinguish varied defects within the same frame.By computing the actual defect length and area,our deep learning methodology presents results that offer intuitive insights for railway maintenance professionals.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2402002)Beijing Natural Science Foundation of China (Grant No.L223013)。
文摘The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.
基金China Tele-com Research Institute Project(Grants No.HQBYG2200147GGN00)National Key R&D Program of China(2020YFB1807600)National Natural Science Foundation of China(NSFC)(Grant No.62022020).
文摘Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.
文摘In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension.
文摘Membrane contact sites (MCS) occur between closely apposed organelles and are a means to transport ions and macromolecules between themselves,co-ordinate cellular metabolism,and direct organelle fission and transport.While MCS between the endoplasmic reticulum (ER)and mitochondria has long been investigated。
基金supported in part by National Key R&D Program of China (No.2020YFB1807802)National Natural Science Foundation of China (Nos.61971148,U22A2054)。
文摘Digital twin is an essential enabling technology for 6G connected vehicles.Through highfidelity mobility simulation,digital twin is expected to make accurate prediction about the vehicle trajectory,and then support intelligent applications such as safety monitoring and self-driving for connected vehicles.However,it is observed that even if a digital twin model is perfectly derived,it might still fail to predict the trajectory due to tiny measurement noise or delay in the initial vehicle locations.This paper aims at investigating the sources of unpredictability of digital twin.Take the car-following behaviors in connected vehicles for case study.The theoretical analysis and experimental results indicate that the predictability of digital twin naturally depends on its system complexity.Once a system enters a complex pattern,its longterm states are unpredictable.Furthermore,our study discloses that the complexity is determined,on the one hand,by the intrinsic factors of the target physical system such as the driver’s response sensitivity and delay,and on the other hand,by the crucial parameters of the digital twin system such as the sampling interval and twining latency.