In this paper,we have investigated the asymptotic behavior of nodal solutions of semilinear elliptic equations in R n. We conclude more precise and extensive results and give the expression of asymptotic behavior near...In this paper,we have investigated the asymptotic behavior of nodal solutions of semilinear elliptic equations in R n. We conclude more precise and extensive results and give the expression of asymptotic behavior near ∞ more detail than that of [3]-[5].展开更多
The asymptotic behavior at infinity and an estimate of positive radial solutions of the equation △u + sum from i=1 to k cirli upi = 0, x ∈ Rn,(0.1)are obtained and the structure of separation property of positive...The asymptotic behavior at infinity and an estimate of positive radial solutions of the equation △u + sum from i=1 to k cirli upi = 0, x ∈ Rn,(0.1)are obtained and the structure of separation property of positive radial solutions of Eq. (0.1) with different initial data α is discussed.展开更多
In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general in...In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general involving both singular and sublinear terms. Some sufficient conditions are given with the aid of the barrier method and ODE approach, which guarantee the existence of positive entire solutions that tend to any sufficiently large constants arbitrarily prescribed in advance.展开更多
In this paper, we will analyze further to obtain a finer asymptotic behavior of positive solutions of semilinear elliptic equations in R^n by employing the Li's method of energy function.
In this article, the following concave and convex nonlinearities elliptic equations involving critical growth is considered,{-△u=g(x)|u|2*-2u+λf(x)|u|q-2u,x∈Ω u=0,x∈δΩ where Ω RN(N ≥ 3) is an op...In this article, the following concave and convex nonlinearities elliptic equations involving critical growth is considered,{-△u=g(x)|u|2*-2u+λf(x)|u|q-2u,x∈Ω u=0,x∈δΩ where Ω RN(N ≥ 3) is an open bounded domain with smooth boundary, 1 〈 q 〈 2, λ 〉 0. 2*= 2N/N-2 is the critical Sobolev exponent, f ∈L2*/2N/N-2 is nonzero and nonnegative, and g E (Ω) is a positive function with k local maximum points. By the Nehari method and variational method, k + 1 positive solutions are obtained. Our results complement and optimize the previous work by Lin [MR2870946, Nonlinear Anal. 75(2012) 2660-26711.展开更多
This paper is devoted to the study of existence,uniqueness and non-degeneracy of positive solutions of semi-linear elliptic equations.A necessary and sufficient condition for the existence of positive solutions to pro...This paper is devoted to the study of existence,uniqueness and non-degeneracy of positive solutions of semi-linear elliptic equations.A necessary and sufficient condition for the existence of positive solutions to problems is given.We prove that if the uniqueness and non-degeneracy results are valid for positive solutions of a class of semi-linear elliptic equations,then they are still valid when one perturbs the differential operator a little bit.As consequences,some uniqueness results of positive solutions under the domain perturbation are also obtained.展开更多
This paper is concerned with Neumann problem for semilinear elliptic equations involving Sobolev critical exponents with limit nonlinearity in boundary condition. By critical point theory and dual variational principl...This paper is concerned with Neumann problem for semilinear elliptic equations involving Sobolev critical exponents with limit nonlinearity in boundary condition. By critical point theory and dual variational principle, the author obtains the existence and multiplicity results.展开更多
A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive...A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.展开更多
A class of higher order neutral difference equations is considered and some sufficient conditions are obtained for all solutions to oscillate or tend to zero.
In this paper, we investigate the asymptotic behavior of the following quasilinear difference equations (E) where , . We classified the solutions into six types by means of their asymptotic behavior. We establish the ...In this paper, we investigate the asymptotic behavior of the following quasilinear difference equations (E) where , . We classified the solutions into six types by means of their asymptotic behavior. We establish the necessary and/or sufficient conditions for such equations to possess a solution of each of these six types.展开更多
Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some i...Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.展开更多
This paper is concerned with exact boundary behavior of large solutions to semilinear elliptic equations △u=b(x)f(u)(C0+|▽u|q),x∈Ω,where Ω is a bounded domain with a smooth boundary in RN,C0≥0,q E [0,2),b∈Cloc...This paper is concerned with exact boundary behavior of large solutions to semilinear elliptic equations △u=b(x)f(u)(C0+|▽u|q),x∈Ω,where Ω is a bounded domain with a smooth boundary in RN,C0≥0,q E [0,2),b∈Clocα(Ω) is positive in but may be vanishing or appropriately singular on the boundary,f∈C[0,∞),f(0)=0,and f is strictly increasing on [0,∞)(or f∈C(R),f(s)> 0,■s∈R,f is strictly increasing on R).We show unified boundary behavior of such solutions to the problem under a new structure condition on f.展开更多
This paper is concerned with a class of semilinear hyperbolic systems in odd space dimensions. Our main aim is to prove the existence of a small amplitude solution which is asymptotic to the free solution as t →-∞ i...This paper is concerned with a class of semilinear hyperbolic systems in odd space dimensions. Our main aim is to prove the existence of a small amplitude solution which is asymptotic to the free solution as t →-∞ in the energy norm, and to show it has a free profile as t →+∞. Our approach is based on the work of [11]. Namely we use a weighted L^∞ norm to get suitable a priori estimates. This can be done by restricting our attention to radially symmetric solutions. Corresponding initial value problem is also considered in an analogous framework. Besides, we give an extended result of [14] for three space dimensional case in Section 5, which is prepared independently of the other parts of the paper.展开更多
By the Schauder-Tychonoff fixed-point theorem, we inyestigate the existence and asymptotic behavior of positive radial solutions of fully nonlinear elliptic equations in Re. We give some sufficient conditions to guara...By the Schauder-Tychonoff fixed-point theorem, we inyestigate the existence and asymptotic behavior of positive radial solutions of fully nonlinear elliptic equations in Re. We give some sufficient conditions to guarantee the existence of bounded and unbounded radial solutions and consider the nonexistence of positive solution in Rn.展开更多
In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation me...In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation method in critical point theory.展开更多
In this paper, we consider the neutral difference equation△(x n-cx n-m )+p nx n-k =0, n=N, N+1, N+2, …,where c and p n are real numbers, k, m are positive integers with m<k, and △ den...In this paper, we consider the neutral difference equation△(x n-cx n-m )+p nx n-k =0, n=N, N+1, N+2, …,where c and p n are real numbers, k, m are positive integers with m<k, and △ denotes the forward difference operator: △ u n=u n+1 -u n. By using the Krasnoselskii fixed theorem, we obtain some sufficient conditions under which such an equation has a bounded and eventually positive solution which tends to zero as n→∞.展开更多
A class of neutral type higher order difference equations is considered. Some sufficient conditions of oscillation and asymptotic behavior of solutions is given.
文摘In this paper,we have investigated the asymptotic behavior of nodal solutions of semilinear elliptic equations in R n. We conclude more precise and extensive results and give the expression of asymptotic behavior near ∞ more detail than that of [3]-[5].
基金Supported by the Natural Science Foundation of China(10901126)
文摘The asymptotic behavior at infinity and an estimate of positive radial solutions of the equation △u + sum from i=1 to k cirli upi = 0, x ∈ Rn,(0.1)are obtained and the structure of separation property of positive radial solutions of Eq. (0.1) with different initial data α is discussed.
文摘In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general involving both singular and sublinear terms. Some sufficient conditions are given with the aid of the barrier method and ODE approach, which guarantee the existence of positive entire solutions that tend to any sufficiently large constants arbitrarily prescribed in advance.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10901047 and 10971061) Excellent Youth Program of Hunan Normal University (Grant No. 080640)
文摘In this paper, we will analyze further to obtain a finer asymptotic behavior of positive solutions of semilinear elliptic equations in R^n by employing the Li's method of energy function.
基金Supported by National Natural Science Foundation of China(11471267)the Doctoral Scientific Research Funds of China West Normal University(15D006 and 16E014)+1 种基金Meritocracy Research Funds of China West Normal University(17YC383)Natural Science Foundation of Education of Guizhou Province(KY[2016]046)
文摘In this article, the following concave and convex nonlinearities elliptic equations involving critical growth is considered,{-△u=g(x)|u|2*-2u+λf(x)|u|q-2u,x∈Ω u=0,x∈δΩ where Ω RN(N ≥ 3) is an open bounded domain with smooth boundary, 1 〈 q 〈 2, λ 〉 0. 2*= 2N/N-2 is the critical Sobolev exponent, f ∈L2*/2N/N-2 is nonzero and nonnegative, and g E (Ω) is a positive function with k local maximum points. By the Nehari method and variational method, k + 1 positive solutions are obtained. Our results complement and optimize the previous work by Lin [MR2870946, Nonlinear Anal. 75(2012) 2660-26711.
基金the National Natural Science Foundation of China(Grant Nos.10671064,10171029)
文摘This paper is devoted to the study of existence,uniqueness and non-degeneracy of positive solutions of semi-linear elliptic equations.A necessary and sufficient condition for the existence of positive solutions to problems is given.We prove that if the uniqueness and non-degeneracy results are valid for positive solutions of a class of semi-linear elliptic equations,then they are still valid when one perturbs the differential operator a little bit.As consequences,some uniqueness results of positive solutions under the domain perturbation are also obtained.
文摘This paper is concerned with Neumann problem for semilinear elliptic equations involving Sobolev critical exponents with limit nonlinearity in boundary condition. By critical point theory and dual variational principle, the author obtains the existence and multiplicity results.
文摘A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.
文摘A class of higher order neutral difference equations is considered and some sufficient conditions are obtained for all solutions to oscillate or tend to zero.
文摘In this paper, we investigate the asymptotic behavior of the following quasilinear difference equations (E) where , . We classified the solutions into six types by means of their asymptotic behavior. We establish the necessary and/or sufficient conditions for such equations to possess a solution of each of these six types.
文摘Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.
基金supported by National Natural Science Foundation of China (Grant No. 11571295)
文摘This paper is concerned with exact boundary behavior of large solutions to semilinear elliptic equations △u=b(x)f(u)(C0+|▽u|q),x∈Ω,where Ω is a bounded domain with a smooth boundary in RN,C0≥0,q E [0,2),b∈Clocα(Ω) is positive in but may be vanishing or appropriately singular on the boundary,f∈C[0,∞),f(0)=0,and f is strictly increasing on [0,∞)(or f∈C(R),f(s)> 0,■s∈R,f is strictly increasing on R).We show unified boundary behavior of such solutions to the problem under a new structure condition on f.
基金Project supported by Grant-in-Aid for Science Research (No.12740105, No.14204011), JSPS.
文摘This paper is concerned with a class of semilinear hyperbolic systems in odd space dimensions. Our main aim is to prove the existence of a small amplitude solution which is asymptotic to the free solution as t →-∞ in the energy norm, and to show it has a free profile as t →+∞. Our approach is based on the work of [11]. Namely we use a weighted L^∞ norm to get suitable a priori estimates. This can be done by restricting our attention to radially symmetric solutions. Corresponding initial value problem is also considered in an analogous framework. Besides, we give an extended result of [14] for three space dimensional case in Section 5, which is prepared independently of the other parts of the paper.
文摘By the Schauder-Tychonoff fixed-point theorem, we inyestigate the existence and asymptotic behavior of positive radial solutions of fully nonlinear elliptic equations in Re. We give some sufficient conditions to guarantee the existence of bounded and unbounded radial solutions and consider the nonexistence of positive solution in Rn.
基金Supported by National Natural Science Foundation of China(11071198)
文摘In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation method in critical point theory.
文摘In this paper, we consider the neutral difference equation△(x n-cx n-m )+p nx n-k =0, n=N, N+1, N+2, …,where c and p n are real numbers, k, m are positive integers with m<k, and △ denotes the forward difference operator: △ u n=u n+1 -u n. By using the Krasnoselskii fixed theorem, we obtain some sufficient conditions under which such an equation has a bounded and eventually positive solution which tends to zero as n→∞.
文摘A class of neutral type higher order difference equations is considered. Some sufficient conditions of oscillation and asymptotic behavior of solutions is given.