In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonp...In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonparametric weight function method and their strong consistency is proved under the suitable conditions.展开更多
In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the mode...In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals.展开更多
Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is con...Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is contained in R are fixed design points, β =(β_1,β_2,···,β_p)′ is an unknown parameter vector, g(·) is an unknown bounded real-valuedfunction defined on a compact subset T of the real line R, and ε_k is a linear process given byε_k = ∑ from j=0 to ∞ of ψ_je_(k-j), ψ_0=1, where ∑ from j=0 to ∞ of |ψ_j| < ∞, and e_j,j=0, +-1, +-2,···, ard i.i.d. random variables. In this paper we establish the asymptoticnormality of the least squares estimator of β, a smooth estimator of g(·), and estimators of theautocovariance and autocorrelation functions of the linear process ε_k.展开更多
Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and...Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and {ui} and {ti} are two nonrandom sequences on [0, 1]. Some wavelet estimators of the parametric component β, the non- parametric component g(t) and the variance function h(u) are given. Under some general conditions, the strong convergence rate of these wavelet estimators is O(n- 1 log n). Hence our results are extensions of those re, sults on independent random error settings.展开更多
The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the...The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the strong uniform convergence of the bootstrap approximation is proved. Our results can be used to construct the large sample confidence intervals for the parameters of interest. A simulation study is conducted to evaluate the finite-sample performance of the bootstrap method and to compare it with the normal approximation-based method.展开更多
Consider a semiparametric regression model Y_i=X_iβ+g(t_i)+e_i, 1 ≤ i ≤ n, where Y_i is censored on the right by another random variable C_i with known or unknown distribution G. The wavelet estimators of param...Consider a semiparametric regression model Y_i=X_iβ+g(t_i)+e_i, 1 ≤ i ≤ n, where Y_i is censored on the right by another random variable C_i with known or unknown distribution G. The wavelet estimators of parameter and nonparametric part are given by the wavelet smoothing and the synthetic data methods. Under general conditions, the asymptotic normality for the wavelet estimators and the convergence rates for the wavelet estimators of nonparametric components are investigated. A numerical example is given.展开更多
For the semiparametric regression model:Y^((j))(x_(in),t_(in))=t_(in)β+g(x_(in))+e^((j))(x_(in)),1≤j≤k,1≤i≤n,where t_(in)∈R and x(in)∈Rpare known to be nonrandom,g is an unknown continuous function on a compact...For the semiparametric regression model:Y^((j))(x_(in),t_(in))=t_(in)β+g(x_(in))+e^((j))(x_(in)),1≤j≤k,1≤i≤n,where t_(in)∈R and x(in)∈Rpare known to be nonrandom,g is an unknown continuous function on a compact set A in R^(p),e^(j)(x_(in))are m-extended negatively dependent random errors with mean zero,Y^((j))(x_(in),t_(in))represent the j-th response variables which are observable at points xin,tin.In this paper,we study the strong consistency,complete consistency and r-th(r>1)mean consistency for the estimatorsβ_(k,n)and g__(k,n)ofβand g,respectively.The results obtained in this paper markedly improve and extend the corresponding ones for independent random variables,negatively associated random variables and other mixing random variables.Moreover,we carry out a numerical simulation for our main results.展开更多
The authorS give MLE θ1ML of θ1 in the model Y= θ1+ g(T) +ε, then consider Bahadurasymptotic efficiency of θ1ML, where T and ε are independent, g is unknown, ε ̄ (·) is knownwith mean 0 and variance σ2.
Consider the model Y=Xτβ+g(T)+ε. Here g is a smooth but unknown function, β is a k×1 parameter vector to be estimated and ε, is an random error with mean 0 and variance σ2. The asymptotically efficient esti...Consider the model Y=Xτβ+g(T)+ε. Here g is a smooth but unknown function, β is a k×1 parameter vector to be estimated and ε, is an random error with mean 0 and variance σ2. The asymptotically efficient estimator of β is constructed on the basis of the model Yi=Xτiβ+g(Ti)+εi, i=1,…,n, when the density functions of (X,T) and ε are known or unknown.Finally, an asymptotically normal estimator of σ2 is given.展开更多
The assumption of homoscedasticity has received much attention in classical analysis of regression. Heteroscedasticity tests have been well studied in parametric and nonparametric regressions. The aim of this paper is...The assumption of homoscedasticity has received much attention in classical analysis of regression. Heteroscedasticity tests have been well studied in parametric and nonparametric regressions. The aim of this paper is to present a test of heteroscedasticity for nonlinear semiparametric regression models with nonparametric variance function. The validity of the proposed test is illustrated by two simulated examples and a real data example.展开更多
We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are...We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.展开更多
Semiparametric mixed-effects double regression models have been used for analysis of longitu-dinal data in a variety of applications,as they allow researchers to jointly model the mean and variance of the mixed-effect...Semiparametric mixed-effects double regression models have been used for analysis of longitu-dinal data in a variety of applications,as they allow researchers to jointly model the mean and variance of the mixed-effects as a function of predictors.However,these models are commonly estimated based on the normality assumption for the errors and the results may thus be sensitive to outliers and/or heavy-tailed data.Quantile regression is an ideal alternative to deal with these problems,as it is insensitive to heteroscedasticity and outliers and can make statistical analysis more robust.In this paper,we consider Bayesian quantile regression analysis for semiparamet-ric mixed-effects double regression models based on the asymmetric Laplace distribution for the errors.We construct a Bayesian hierarchical model and then develop an efficient Markov chain Monte Carlo sampling algorithm to generate posterior samples from the full posterior dis-tributions to conduct the posterior inference.The performance of the proposed procedure is evaluated through simulation studies and a real data application.展开更多
In this paper, the L_1-norm estimators and the random weighted statistic fora semiparametric regression model are constructed, the strong convergence rates of estimators areobtain under certain conditions, the strong ...In this paper, the L_1-norm estimators and the random weighted statistic fora semiparametric regression model are constructed, the strong convergence rates of estimators areobtain under certain conditions, the strong efficiency of the random weighting method is shown. Asimulation study is conducted to compare the L_1-norm estimator with the least square estimator interm of approximate accuracy, and simulation results are given for comparison between the randomweighting method and normal approximation method.展开更多
The present paper proposes a semiparametric reproductive dispersion nonlinear model (SRDNM) which is an extension of the nonlinear reproductive dispersion models and the semiparameter regression models. Maximum pena...The present paper proposes a semiparametric reproductive dispersion nonlinear model (SRDNM) which is an extension of the nonlinear reproductive dispersion models and the semiparameter regression models. Maximum penalized likelihood estimates (MPLEs) of unknown parameters and nonparametric functions in SRDNM are presented. Assessment of local influence for various perturbation schemes are investigated. Some local influence diagnostics are given. A simulation study and a real example are used to illustrate the proposed methodologies.展开更多
基金Supported by the National Natural Science Foundation of China(10571008)Supported by the Natural Science Foundation of Henan(0511013300)Supported by the National Science Foundation of Henan Education Department(2006110012)
文摘In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonparametric weight function method and their strong consistency is proved under the suitable conditions.
基金China Postdoctoral Science Foundation Funded Project (20080430633)Shanghai Postdoctoral Scientific Program (08R214121)+3 种基金the National Natural Science Foundation of China (10871013)the Research Fund for the Doctoral Program of Higher Education (20070005003)the Natural Science Foundation of Beijing (1072004)the Basic Research and Frontier Technology Foundation of He'nan (072300410090)
文摘In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals.
基金CHEN Min's work is supported by Grant No. 70221001 and No. 70331001 from NNSFC and Grant No. KZCX2-SW-118 from CAS.
文摘Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is contained in R are fixed design points, β =(β_1,β_2,···,β_p)′ is an unknown parameter vector, g(·) is an unknown bounded real-valuedfunction defined on a compact subset T of the real line R, and ε_k is a linear process given byε_k = ∑ from j=0 to ∞ of ψ_je_(k-j), ψ_0=1, where ∑ from j=0 to ∞ of |ψ_j| < ∞, and e_j,j=0, +-1, +-2,···, ard i.i.d. random variables. In this paper we establish the asymptoticnormality of the least squares estimator of β, a smooth estimator of g(·), and estimators of theautocovariance and autocorrelation functions of the linear process ε_k.
基金supported by the National Natural Science Foundation of China (No. 11071022)the Key Project of the Ministry of Education of China (No. 209078)the Youth Project of Hubei Provincial Department of Education of China (No. Q20122202)
文摘Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and {ui} and {ti} are two nonrandom sequences on [0, 1]. Some wavelet estimators of the parametric component β, the non- parametric component g(t) and the variance function h(u) are given. Under some general conditions, the strong convergence rate of these wavelet estimators is O(n- 1 log n). Hence our results are extensions of those re, sults on independent random error settings.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10571008, 10871013)Beijing Natural Science Foundation (Grant No. 1072004)Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20070005003)
文摘The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the strong uniform convergence of the bootstrap approximation is proved. Our results can be used to construct the large sample confidence intervals for the parameters of interest. A simulation study is conducted to evaluate the finite-sample performance of the bootstrap method and to compare it with the normal approximation-based method.
基金Supported by the National Natural Science Foundation of China (11071022)the Key Project of Hubei Provincial Department of Education (D20092207)
文摘Consider a semiparametric regression model Y_i=X_iβ+g(t_i)+e_i, 1 ≤ i ≤ n, where Y_i is censored on the right by another random variable C_i with known or unknown distribution G. The wavelet estimators of parameter and nonparametric part are given by the wavelet smoothing and the synthetic data methods. Under general conditions, the asymptotic normality for the wavelet estimators and the convergence rates for the wavelet estimators of nonparametric components are investigated. A numerical example is given.
基金supported by the National Natural Science Foundation of China(11671012,11871072)the Natural Science Foundation of Anhui Province(1808085QA03,1908085QA01,1908085QA07)the Provincial Natural Science Research Project of Anhui Colleges(KJ2019A0003)。
文摘For the semiparametric regression model:Y^((j))(x_(in),t_(in))=t_(in)β+g(x_(in))+e^((j))(x_(in)),1≤j≤k,1≤i≤n,where t_(in)∈R and x(in)∈Rpare known to be nonrandom,g is an unknown continuous function on a compact set A in R^(p),e^(j)(x_(in))are m-extended negatively dependent random errors with mean zero,Y^((j))(x_(in),t_(in))represent the j-th response variables which are observable at points xin,tin.In this paper,we study the strong consistency,complete consistency and r-th(r>1)mean consistency for the estimatorsβ_(k,n)and g__(k,n)ofβand g,respectively.The results obtained in this paper markedly improve and extend the corresponding ones for independent random variables,negatively associated random variables and other mixing random variables.Moreover,we carry out a numerical simulation for our main results.
文摘The authorS give MLE θ1ML of θ1 in the model Y= θ1+ g(T) +ε, then consider Bahadurasymptotic efficiency of θ1ML, where T and ε are independent, g is unknown, ε ̄ (·) is knownwith mean 0 and variance σ2.
文摘Consider the model Y=Xτβ+g(T)+ε. Here g is a smooth but unknown function, β is a k×1 parameter vector to be estimated and ε, is an random error with mean 0 and variance σ2. The asymptotically efficient estimator of β is constructed on the basis of the model Yi=Xτiβ+g(Ti)+εi, i=1,…,n, when the density functions of (X,T) and ε are known or unknown.Finally, an asymptotically normal estimator of σ2 is given.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2008284)
文摘The assumption of homoscedasticity has received much attention in classical analysis of regression. Heteroscedasticity tests have been well studied in parametric and nonparametric regressions. The aim of this paper is to present a test of heteroscedasticity for nonlinear semiparametric regression models with nonparametric variance function. The validity of the proposed test is illustrated by two simulated examples and a real data example.
文摘We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.
基金Dr.Wu was supported by the National Natural Science Foundation of China under grant 11861041Drs.Keying Ye and Min Wang were partially supported by a grant from the UTSA Vice President for Research,Economic Development,and Knowledge Enterprise at the University of Texas at San Antonio.
文摘Semiparametric mixed-effects double regression models have been used for analysis of longitu-dinal data in a variety of applications,as they allow researchers to jointly model the mean and variance of the mixed-effects as a function of predictors.However,these models are commonly estimated based on the normality assumption for the errors and the results may thus be sensitive to outliers and/or heavy-tailed data.Quantile regression is an ideal alternative to deal with these problems,as it is insensitive to heteroscedasticity and outliers and can make statistical analysis more robust.In this paper,we consider Bayesian quantile regression analysis for semiparamet-ric mixed-effects double regression models based on the asymmetric Laplace distribution for the errors.We construct a Bayesian hierarchical model and then develop an efficient Markov chain Monte Carlo sampling algorithm to generate posterior samples from the full posterior dis-tributions to conduct the posterior inference.The performance of the proposed procedure is evaluated through simulation studies and a real data application.
基金Supported by the Natural Science Foundation of Beijing City of China (1042002)the Science and Technology Development Foundation of Education Committee of Beijing Citythe Special Expenditure of Excellent Person Education of Beijing(20041D0501515)
文摘In this paper, the L_1-norm estimators and the random weighted statistic fora semiparametric regression model are constructed, the strong convergence rates of estimators areobtain under certain conditions, the strong efficiency of the random weighting method is shown. Asimulation study is conducted to compare the L_1-norm estimator with the least square estimator interm of approximate accuracy, and simulation results are given for comparison between the randomweighting method and normal approximation method.
基金Supported by the National Natural Science Foundation of China (No. 10961026, 10761011)the National Social Science Foundation of China (No. 10BTJ001)
文摘The present paper proposes a semiparametric reproductive dispersion nonlinear model (SRDNM) which is an extension of the nonlinear reproductive dispersion models and the semiparameter regression models. Maximum penalized likelihood estimates (MPLEs) of unknown parameters and nonparametric functions in SRDNM are presented. Assessment of local influence for various perturbation schemes are investigated. Some local influence diagnostics are given. A simulation study and a real example are used to illustrate the proposed methodologies.