In this paper, a tailored four-step Adams-Bashforth-Moulton (ABM) algorithm is applied to a semirecursive formulation to perform a real-time simulation of a semitrailer truck. In the ABM algorithm, each integration st...In this paper, a tailored four-step Adams-Bashforth-Moulton (ABM) algorithm is applied to a semirecursive formulation to perform a real-time simulation of a semitrailer truck. In the ABM algorithm, each integration step involves two function evaluations, namely predictor and corrector. This is fundamentally different when compared to the classic fourth-order Runge-Kutta (RK) integrator approach that contains four function evaluations. A semitrailer truck under investigation is modeled in term of a semirecursive method and simulated by using the presented ABM algorithm. The results show that the four-step ABM method can reduce CPU time almost 50% for solving the truck dynamics with very similar accuracy, in comparison to the fourth-order RK method. The presented ABM algorithm could be used in the semirecursive formulation to carry out accurate real-time simulation of medium-large vehicle systems.展开更多
This paper investigates an innovative negative-stiffness device(NSD)that modifies the apparent stiffness of the supported structure for seismic isolation.The NSD comprises a lower base on the bottom and a cap on the t...This paper investigates an innovative negative-stiffness device(NSD)that modifies the apparent stiffness of the supported structure for seismic isolation.The NSD comprises a lower base on the bottom and a cap on the top,together with a connecting rod,vertical movable wall,and compressed elastic spring,as well as circumferentially arranged,pretensioned external ropes,and inclined shape memory wires.This configuration can deliver negative stiffness and energy dissipation in any direction within the horizontal plane.A numerical model of the device is developed through a two-step semirecursive method to obtain the force–displacement characteristic relationship.Such a model is first validated through comparison with the results obtained via the commercial software ADAMS.Finally,a large parametric study is performed to assess the role and the influence of each design variable on the overall response of the proposed device.Useful guidelines are drawn from this analysis to guide the system design and optimization.展开更多
基金the National Natural Science Foundation of China (Grant 11702039)the Fundamental Research Funds for the Central Universities of China (Grant 106112017CDJXY330002).
文摘In this paper, a tailored four-step Adams-Bashforth-Moulton (ABM) algorithm is applied to a semirecursive formulation to perform a real-time simulation of a semitrailer truck. In the ABM algorithm, each integration step involves two function evaluations, namely predictor and corrector. This is fundamentally different when compared to the classic fourth-order Runge-Kutta (RK) integrator approach that contains four function evaluations. A semitrailer truck under investigation is modeled in term of a semirecursive method and simulated by using the presented ABM algorithm. The results show that the four-step ABM method can reduce CPU time almost 50% for solving the truck dynamics with very similar accuracy, in comparison to the fourth-order RK method. The presented ABM algorithm could be used in the semirecursive formulation to carry out accurate real-time simulation of medium-large vehicle systems.
文摘This paper investigates an innovative negative-stiffness device(NSD)that modifies the apparent stiffness of the supported structure for seismic isolation.The NSD comprises a lower base on the bottom and a cap on the top,together with a connecting rod,vertical movable wall,and compressed elastic spring,as well as circumferentially arranged,pretensioned external ropes,and inclined shape memory wires.This configuration can deliver negative stiffness and energy dissipation in any direction within the horizontal plane.A numerical model of the device is developed through a two-step semirecursive method to obtain the force–displacement characteristic relationship.Such a model is first validated through comparison with the results obtained via the commercial software ADAMS.Finally,a large parametric study is performed to assess the role and the influence of each design variable on the overall response of the proposed device.Useful guidelines are drawn from this analysis to guide the system design and optimization.