期刊文献+
共找到2,950篇文章
< 1 2 148 >
每页显示 20 50 100
Effect of Gd Addition on Hot Deformation Behavior and Microstructure Evolution of 7075 Aluminum Alloy
1
作者 LI Yajie FAN Xuran +2 位作者 QIN Fengming ZHAO Xiaodong CAO Kefan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1595-1612,共18页
In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at... In order to clarify the effect of rare earth Gd on the microstructure evolution and deformation behavior of 7075 aluminum alloy during hot compression,uniaxial compression tests of Al-Zn-Mg-Cu-0.5%Gd were conducted at strain rates of 0.001,0.01,0.1,and 1 s^(-1)with the temperatures ranging from 350 to 450℃.The microstructural evolution during deformation was characterized using optical microscopy and electron backscatter diffraction(EBSD)techniques.The experimental results indicate that the addition of the rare earth element Gd significantly increases the peak flow stress and thermal activation energy of the alloy.Due to the pinning effect of rare earth phases,dislocation movement is hindered,leading to an increased level of work hardening in the alloy.However,the dynamic recrystallization of the alloy is complicated.At a high Z(Zener-Hollomon parameter)values,recrystallization occurs in the form of DDRX(Discontinuous Dynamic Recrystallization),making it easier to nucleate at grain boundaries.As the Z value decreases gradually,the recrystallization mechanism transitions from discontinuous dynamic recrystallization(DDRX)to continuous dynamic recrystallization(CDRX).At a low Z values with the strain rate of 0.001 s^(-1),the inhibitory effect of rare earths weakens,resulting in a comparable recrystallization ratio between Al-Zn-Mg-Cu-Gd alloy and 7075 aluminum alloy.Moreover,the average grain size of the aluminum alloy with Gd addition is only half that of 7075 aluminum.The addition of Gd provides Orowan and substructure strengthening for the alloy,which greatly improves the work-hardening of the alloy compared with 7075 aluminum alloy and improves the strength of the alloy. 展开更多
关键词 Al-Zn-Mg-Cu-Gd hot deformation behavior constitutive model dynamic recrystallization microstructure evolution
下载PDF
Enhancing constitutive description and workability characterization of Mg alloy during hot deformation using machine learning-based Arrhenius-type model
2
作者 Jinchuan Long Lei Deng +6 位作者 Junsong Jin Mao Zhang Xuefeng Tang Pan Gong Xinyun Wang Gangfeng Xiao Qinxiang Xia 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期3003-3023,共21页
Hot deformation is a commonly employed processing technique to enhance the ductility and workability of Mg alloy.However,the hot deformation of Mg alloy is highly sensitive to factors such as temperature,strain rate,a... Hot deformation is a commonly employed processing technique to enhance the ductility and workability of Mg alloy.However,the hot deformation of Mg alloy is highly sensitive to factors such as temperature,strain rate,and strain,leading to complex flow behavior and an exceptionally narrow processing window for Mg alloy.To overcome the shortcomings of the conventional Arrhenius-type(AT)model,this study developed machine learning-based Arrhenius-type(ML-AT)models by combining the genetic algorithm(GA),particle swarm optimization(PSO),and artificial neural network(ANN).Results indicated that when describing the flow behavior of the AQ80 alloy,the PSO-ANN-AT model demonstrates the most prominent prediction accuracy and generalization ability among all ML-AT and AT models.Moreover,an activation energy-processing(AEP)map was established using the reconstructed flow stress and activation energy fields based on the PSO-ANN-AT model.Experimental validations revealed that this AEP map exhibits superior predictive capability for microstructure evolution compared to the one established by the traditional interpolation methods,ultimately contributing to the precise determination of the optimum processing window.These findings provide fresh insights into the accurate constitutive description and workability characterization of Mg alloy during hot deformation. 展开更多
关键词 Constitutive description Workability characterization Machine learning Mg alloy hot deformation
下载PDF
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
3
作者 WANG Fan WANG Xitao +1 位作者 XU Shiguang HE Jinshan 《材料导报》 EI CAS CSCD 北大核心 2024年第17期165-171,共7页
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati... The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation. 展开更多
关键词 7Mo super austenitic stainless steel hot deformation behavior flow stress BP-ANN Arrhenius constitutive equation
下载PDF
Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel 被引量:4
4
作者 Yushuo Li Yanwu Dong +3 位作者 Zhouhua Jiang Qingfei Tang Shuyang Du Zhiwen Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期324-334,共11页
The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the... The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the hot deformation behavior was analyzed by Ce-containing inclusions and segregation of Ce.The results show that after the addition of Ce,large,angular,hard,and brittle inclusions(TiN-Al_(2)O_(3),TiN,and Al_(2)O_(3)) can be modified to fine and dispersed Ce-containing inclusions(Ce-Al-O-S and TiN-Ce-Al-O-S).During the solidification,Ce-containing inclusions can be used as heterogeneous nucleation particles to refine as-cast grains.During the hot deformation,Ce-containing inclusions can pin dislocation movement and grain boundary migration,induce dynamic recrystallization(DRX)nucleation,and avoid the formation and propagation of micro cracks and gaps.In addition,during the solidification,Ce atoms enrich at the front of solid-li-quid interface,resulting in composition supercooling and refining the secondary dendrites.Similarly,during the hot deformation,Ce atoms tend to segregate at the boundaries of DRX grains,inhibiting the growth of grains.Under the synergistic effect of Ce-containing inclusions and Ce segregation,although the hot deformation resistance and hot deformation activation energy are improved,DRX is more likely to occur and the size of DRX grains is significantly refined,and the problem of hot deformation cracking can be alleviated.Finally,the microhardness of the samples was measured.The results show that compared with as-cast samples,the microhardness of hot-deformed samples increases signific-antly,and with the increase of DRX degree,the microhardness decreases continuously.In addition,Ce can affect the microhardness of Mn18Cr18N steel by affecting as-cast and hot deformation microstructures. 展开更多
关键词 rare earth hot deformation Mn18Cr18N steel non-metallic inclusions element segregation MICROHARDNESS
下载PDF
Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method 被引量:2
5
作者 Li Hu Mengwei Lang +4 位作者 Laixin Shi Mingao Li Tao Zhou Chengli Bao Mingbo Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1016-1028,共13页
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s... Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX). 展开更多
关键词 Mg-RE-Zn alloy hot deformation Microstructure evolution Constitutive model Finite element simulation
下载PDF
Modeling of strain hardening and dynamic recrystallization of ZK60 magnesium alloy during hot deformation 被引量:11
6
作者 何运斌 潘清林 +3 位作者 陈琴 张志野 刘晓艳 李文斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期246-254,共9页
The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A... The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases. 展开更多
关键词 magnesium alloys flow stress strain hardening dynamic recrystallization hot deformation
下载PDF
Effect of hot deformation conditions on grain structure and properties of 7085 aluminum alloy 被引量:12
7
作者 陈送义 陈康华 +1 位作者 贾乐 彭国胜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期329-334,共6页
The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture t... The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12. 展开更多
关键词 7085 aluminum alloy Zener-Hollomon parameter hot deformation grain structure dynamic recrystallization static recrystallization
下载PDF
Processing map and hot deformation mechanism of novel nickel-free white copper alloy 被引量:7
8
作者 刘娜 李周 +2 位作者 李灵 刘斌 徐根应 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3492-3499,共8页
Hot compression test of a novel nickel-free white alloy Cu?12Mn?15Zn?1.5Al?0.3Ti?0.14B?0.1Ce (mass fraction, %) was conducted on a Gleeble?1500 machine in the temperature range of 600?800 °C and the strain rate r... Hot compression test of a novel nickel-free white alloy Cu?12Mn?15Zn?1.5Al?0.3Ti?0.14B?0.1Ce (mass fraction, %) was conducted on a Gleeble?1500 machine in the temperature range of 600?800 °C and the strain rate range of 0.01?10 s?1. The constitutive equation and hot processing map of the alloy were built up according to its hot deformation behavior and hot working characteristics. The deformation activation energy of the alloy is 203.005 kJ/mol. An instability region appears in the hot deformation temperature of 600?700 °C and the strain rate range of 0.32?10 s?1 when the true strain of the alloy is up to 0.7. Under the optimal hot deformation condition of 800 °C and 10 s?1 the prepared specimen has good surface quality and interior structure. The designed nickel-free alloy has very similar white chromaticity with the traditional white copper alloy (Cu?15Ni?24Zn?1.5Pb), and the color difference between them is less than 1.5, which can hardly be distinguished by human eyes. 展开更多
关键词 Ni-free white copper alloy hot compression deformation constitutive equation processing map
下载PDF
Rate controlling mechanisms in hot deformation of 7A55 aluminum alloy 被引量:4
9
作者 冯迪 张新明 +2 位作者 刘胜胆 吴泽政 谈琦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期28-35,共8页
The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were es... The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were established in order to apprehend the kinetics of hot deformation and the rate controlling mechanism was interpreted by the kinetic rate analysis obeying power-law relation. The results indicated that one significant domain representing dynamic recrystallization (DRX) existed on the processing maps and lying in 410-450 &#176;C and 0.05-1 s-1. The conclusions of kinetic analysis correlated well with those obtained from processing maps. The apparent activation energy values calculated in the dynamic recrystallization (DRX) domain and the stability regions except dynamic recrystallization (DRX) domain were 91.2 kJ/mol and 128.8 kJ/mol, respectively, which suggested that grain boundary self-diffusion and cross-slip were the rate controlling mechanisms. 展开更多
关键词 7A55 aluminum alloy processing maps hot deformation kinetic analysis dynamic recrystallization
下载PDF
Microstructure and magnetic properties of anisotropic Nd-Fe-B magnets prepared by spark plasma sintering and hot deformation 被引量:3
10
作者 李小强 李力 +3 位作者 胡可 陈志成 屈盛官 杨超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3142-3151,共10页
Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering tem... Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis. 展开更多
关键词 Nd-Fe-B magnet hydrogen-disproportionation-desorption-recombination(HDDR) spark plasma sintering hot deformation magnetic property
下载PDF
Constitutive modeling of hot deformation behavior of X20Cr13 martensitic stainless steel with strain effect 被引量:5
11
作者 任发才 陈军 陈飞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1407-1413,共7页
Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the s... Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the strain rate ranging from 0.001 to 10 s^-1. The material constants of a and n, activation energy Q and A were calculated as a function of strain by a fifth-order polynomial fit. Constitutive models incorporating deformation temperature, strain rate and strain were developed to model the hot deformation behavior of X20Cr13 martensitic stainless steel based on the Arrhenius equation. The predictable efficiency of the developed constitutive models of X20Cr13 martensitic stainless steel was analyzed by correlation coefficient and average absolute relative error which are 0.996 and 3.22%, respectively. 展开更多
关键词 martensitic stainless steel hot deformation behavior flow stress constitutive modeling
下载PDF
Characterization of hot deformation microstructures of alpha-beta titanium alloy with equiaxed structure 被引量:6
12
作者 陈慧琴 曹春晓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期503-509,共7页
Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at stra... Hot deformation behavior and microstructure evolution of TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloy with equiaxed structure were investigated in the two-phase field at temperatures in the range of 980-800 ℃ and at strain rates of 0.001 s-1,0.01 s-1,0.1 s-1.Effects of thermo-mechanical parameters on both of the stress—strain curves and microstructure evolution were analyzed.Grain boundary characteristics of deformation microstructures were tested by electron backscattered diffraction(EBSD).The results reveal that β-phase dominates the deformation and presents discontinuous dynamic recrystallization at 980 ℃;meanwhile,α-phase coarsens at lower strain rates and dissolves at higher strain rates,and α-phase volume fraction and grain size decrease with increasing strain rate.Super-plastic deformation occurs at 950-900 ℃ and strain rate of 0.001 s-1.And the deformation is dominated by soft β-phase,phase interfaces and grain boundaries.Microstructural mechanism operated at 850 ℃ is continuous dynamic recrystallization of α-phase that dominates the deformation,and β-phase deforms to match the deformation of α-phase. 展开更多
关键词 TC11 titanium alloy equiaxed structure hot deformation microstructure evolution
下载PDF
Microstructure and Magnetic Properties of Anisotropic Nd-Fe-B Magnets Fabricated by Single-Stage Hot Deformation 被引量:4
13
作者 田浩 金东哲 +2 位作者 李瑛 朱明原 金红明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期318-320,共3页
Anisotropic Nd-Fe-B magnets were fabricated by the single stage hot deformation (SSHD) method. The magnetic properties of the anisotropic Nd-Fe-B magnets are as follows: the maximum energy product is 234.7 kJ·m-3... Anisotropic Nd-Fe-B magnets were fabricated by the single stage hot deformation (SSHD) method. The magnetic properties of the anisotropic Nd-Fe-B magnets are as follows: the maximum energy product is 234.7 kJ·m-3 , remanence 1.16 T and coercivity 684.3 kA·m-1. A study of the relationship between microstructure and magnetic properties for the anisotropic Nd-Fe-B magnets was carried out. The results show that the grains of Nd2Fe14B have grown up preferentially along the direction perpendicular to the pressing direction. 展开更多
关键词 ANISOTROPY ND-FE-B single-stage hot deformation mierostructure rare earths
下载PDF
Anisotropic NdFeB Magnet Fabricated by Single Stroke Hot Deformation 被引量:11
14
作者 Y.Li (Chungnam National University, Taejon, Korea) Y.B.Kim (Korea Research Institute of Standards and Science, Taejon, Korea) M.J.Kim, M.S.Song, J.H.Yang, T.K.Kim and C.O.Kim (Chungnam National University, Taejon, Korea) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期129-130,共2页
The general hot deformation process consists of two steps, hot pressing and die-upsetting in order to obtain the anisotropic NdFeB magnet. This is the first report that the high anisotropy NdFeB magnets can be fabrica... The general hot deformation process consists of two steps, hot pressing and die-upsetting in order to obtain the anisotropic NdFeB magnet. This is the first report that the high anisotropy NdFeB magnets can be fabricated by single stroke hot deforming the isotropic magnet. The magnetic properties of those materials are: coercivity iHc ~11 kOe, remanence Br ~12 kG, and the maximum energy product (BH)max ~28 MG.Oe. 展开更多
关键词 NDFEB Anisotropic NdFeB Magnet Fabricated by Single Stroke hot deformation
下载PDF
Effect of Hot Deformation on Microstructure and Hardness of In-situ TiB_2/7075 Composite 被引量:1
15
作者 Lin GENG and Jie ZHANG P.O.Box 433, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China C.Bartels and G. Got tstein Institut fur Metallkunde und Metallphysik, Kopernikusstr.14, RWTH Aa 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期675-676,共1页
Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (abo... Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (about 100 nm in size) were precipitated nearby the grain boundaries where the TiB2 particles exist. After deformation at 300 degreesC, some of the large precipitates and all the small precipitates in these area dissolved into the matrix, meanwhile, fine precipitates were formed in grains. After deformation at 450 degreesC, all the precipitates in the annealed composite dissolved into the matrix, and new phases were precipitated in grains. The dissolution of the large fiber-like precipitate makes the saturation level of the matrix increased and leads to an increased solution hardening and natural aging, which contribute much to the hardening effect. 展开更多
关键词 TIB Effect of hot deformation on Microstructure and Hardness of In-situ TiB2/7075 Composite
下载PDF
Characterization of dynamic microstructure evolution during hot deformation of Al-4.10Cu-1.42Mg-0.57Mn-0.12Zr alloy 被引量:1
16
作者 刘灿 张辉 蒋福林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3477-3485,共9页
The Al?4.10Cu?1.42Mg?0.57Mn?0.12Zr alloy was compressed to different strains at deformation temperature of 300 oC and strain rate of 10 s?1 on Gleeble?1500 system. The dynamic complex microstructures evolutions were i... The Al?4.10Cu?1.42Mg?0.57Mn?0.12Zr alloy was compressed to different strains at deformation temperature of 300 oC and strain rate of 10 s?1 on Gleeble?1500 system. The dynamic complex microstructures evolutions were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The true stress?true strain curves exhibited a peak stress at critical strain, after which the flow stresses decreased monotonically, showing a dynamic flow softening. As the strain increased, the dislocation tangled to cell structure and sub-grain structure, which indicated the occurrence of dynamic recovery during deformation. Dynamic precipitations ofS (Al2CuMg),θ (Al2Cu) and Al3Zr phase were accelerated and coarsened by deformation. ContinuousS phases precipitated in the Al matrix and discontinuousS phases were found to be nucleated near the Al3Zr phase and at the sub-grain boundary. The flow softening mechanism was resulted from the reduction of dislocation density which attributed to dynamic recovery and precipitates coarsening. 展开更多
关键词 aluminum alloy hot deformation flow softening dynamic recovery dynamic precipitation
下载PDF
Deformation behavior and microstructure of an Al-Zn-Mg-Cu-Zr alloy during hot deformation 被引量:10
17
作者 Liang-ming Yan Jian Shen Jun-peng Li Zhou-bing Li Xiao-dong Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期46-52,共7页
The hot deformation behavior and microstructures of Al-7055 commercial alloy were investigated by axisymmetric hot compres- sion at temperatures ranging from 300℃ to 450℃ and strain rates from 10^-2 to 10 s^-1, resp... The hot deformation behavior and microstructures of Al-7055 commercial alloy were investigated by axisymmetric hot compres- sion at temperatures ranging from 300℃ to 450℃ and strain rates from 10^-2 to 10 s^-1, respectively. Microstructures of deformed 7055 alloy were investigated by transmission electron microscopy (TEM). The dependence of peak stress on deformation temperature and strain rate can be expressed by the hyperbolic-sine type equation. The hot deformation activation energy of the alloy is 146 kJ/mol. Moreover, the flow stress curves predicted by the modified constitutive equations are reasonably consistent with the experimental results, which confirms that the proposed deformation constitutive equations can provide evidence for the selection of hot forming parameters. TEM results indicate that dy- namic recovery is the main softening mechanism during hot deformation. 展开更多
关键词 aluminum alloys dynamic recovery hot compression deformation behavior constitutive equation
下载PDF
STUDY ON THE HOT DEFORMATION BEHAVIORS OF Al-Zn-Mg-Cu-Cr ALUMINUM ALLOY 被引量:19
18
作者 G. Y. Lin Z.F. Zhang H. Zhang D.S. Peng J. Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第2期109-115,共7页
The hot deformation behaviors and microstructures of A1-Zn-Mg-Cu-Cr aluminum alloy have been studied using thermal simulation test, optical microscopy and transmission electron microscopy. As a result, the true stress... The hot deformation behaviors and microstructures of A1-Zn-Mg-Cu-Cr aluminum alloy have been studied using thermal simulation test, optical microscopy and transmission electron microscopy. As a result, the true stress versus true strain curves and the microstructures under various deformation conditions are obtained. The microstructures gradually incline to dynamic-recrystallization with the deformation temperature rising and the recrystallization grains refine with the decrease of deformation temperature or with raising the strain rates. The quantitative relationship between the Zener-Hollomon parameter (Z) and average recrystallization grain size in the subsequent heat treatment is set up. 展开更多
关键词 A1-Zn-Mg-Cu-Cr aluminum alloy hot deformation True stressvs true strain curve MICROSTRUCTURE
下载PDF
Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation 被引量:7
19
作者 Bin Fang Gao-feng Tian +3 位作者 Zhen Ji Meng-ya Wang Cheng-chang Jia Shan-wu Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第5期657-663,共7页
The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s... The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s^(-1) on a Gleeble 3500 thermo-simulation machine. The results showed that the softening degree of the alloy between passes decreases with increasing temperature and decreasing strain rates. The critical strain of the first-pass is greater than that of the second-pass. The true stress–true strain curves showed that single-peak dynamic recrystallization, multi-peak dynamic recrystallization, and dynamic response occur when the strain rate is 0.1, 0.01, and 0.001 s^(-1), respectively. The alloy contains three different grain structures after hot deformation: partially recrystallized tissue, completely fine recrystallized tissue, coarse-grained grains. The small-angle grain boundaries increase with increasing temperature. Increasing strain rates cause the small-angle grain boundaries to first increase and then decrease. 展开更多
关键词 FGH96 super-alloy two-pass hot deformation MICROSTRUCTURE GRAIN orientation
下载PDF
Influence of Hot Deformation and Subsequent Austempering on the Mechanical Properties of Hot Rolled Multiphase Steel 被引量:6
20
作者 Zhuang LI Di WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期763-768,共6页
Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory ... Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (σ) and the product of ultimate tensile strength and total elongation (σb-σ) reach the maximum values (791 MPa, 36% and 28476 MPa%, respectively) at optimal processes. 展开更多
关键词 hot deformation AUSTEMPERING hot rolled multiphase steels Mechanical properties
下载PDF
上一页 1 2 148 下一页 到第
使用帮助 返回顶部