Seneca Valley virus (SVV), a newly determined etiological agent of vesicular disease in swine, causes porcine idiopathic disease and occasional acute death in piglets. Recently, an increased number of SVV infection ca...Seneca Valley virus (SVV), a newly determined etiological agent of vesicular disease in swine, causes porcine idiopathic disease and occasional acute death in piglets. Recently, an increased number of SVV infection cases have been reported in the United States (US) and China, resulting in significant economic losses to the swine industry. The first identification of SVV in China was reported in Guangdong Province, a major swine producing province. The cases of SVV were continuously reported in Guangdong in 2015 and 2016. However, the spread of SVV in Guangdong in 2017 remains unknown.In this study, we determined two new SVV strains, CH-GD-2017-1 and CH-GD-2017-2, from Guangdong. The genetic analysis suggested that the two Guangdong strains showed different characteristics to previous Guangdong strains. They showed lower nucleotide similarity with strains isolated in 2015 and 2016, and were more similar to the US strains.Phylogenetic analyses indicated that the new strains were clustered in a different clade with previous Guangdong strains.We found 28 mutated amino acids in the new strains, compared with the first Guangdong strain, SVV CH-01-2015. In the geographic analysis, we found that the US and China reported more SVV cases than other countries, and most of the SVV cases were reported in east and central China—of which, Guangdong Province is one of the major epidemic regions. In conclusion, our findings indicate that SVV continued to spread in Guangdong Province in 2017, and two different clades of SVVs have emerged in this region.展开更多
Cholesterol-25-hydroxylase(CH25 H)is a membrane protein associated with endoplasmic reticulum,and it is an interferon-stimulated factor regulated by interferon.CH25 H catalyzes cholesterol to produce 25-hydroxycholest...Cholesterol-25-hydroxylase(CH25 H)is a membrane protein associated with endoplasmic reticulum,and it is an interferon-stimulated factor regulated by interferon.CH25 H catalyzes cholesterol to produce 25-hydroxycholesterol(25 HC)by adding a second hydroxyl to the 25 th carbon atom of cholesterol.Recent studies have shown that both CH25 H and 25 HC could inhibit the replication of many viruses.In this study,we found that ectopic expression of CH25 H in HEK-293 T and BHK-21 cell lines could inhibit the replication of Seneca Valley virus(SVV)and that there was no species difference.On the other hand,the knockdown of CH25 H could enhance the replication of SVV in HEK-293 T and BHK-21 cells,indicating the importance of CH25 H.To some extent,the CH25 H mutant without hydroxylase activity also lost its ability to inhibit SVV amplification.Further studies demonstrated that 25 HC was involved in the entire life cycle of SVV,especially in repressing its adsorption process.This study reveals that CH25 H exerts the advantage of innate immunity mainly by producing 25 HC to block virion adsorption.展开更多
【目的】纯化猪塞尼卡谷病毒(Seneca Valley virus,SVV)SVV-CH-HB2016毒株,并制备其结构蛋白VP1、VP2和VP3的单克隆抗体。【方法】以蔗糖密度梯度离心法纯化的SVV-CH-HB2016病毒颗粒作为抗原,免疫BALB/c小鼠,取脾细胞与骨髓瘤细胞(SP2/0...【目的】纯化猪塞尼卡谷病毒(Seneca Valley virus,SVV)SVV-CH-HB2016毒株,并制备其结构蛋白VP1、VP2和VP3的单克隆抗体。【方法】以蔗糖密度梯度离心法纯化的SVV-CH-HB2016病毒颗粒作为抗原,免疫BALB/c小鼠,取脾细胞与骨髓瘤细胞(SP2/0)进行细胞融合。通过间接免疫荧光试验(IFA)结合间接ELISA筛选阳性细胞株,制备能特异性分泌针对结构蛋白的杂交瘤细胞株。采用Western blotting和IFA方法分别检测单克隆抗体与重组表达蛋白及天然结构蛋白的反应性,并对单克隆抗体的病毒中和保护效果进行测定。利用空斑试验和实时荧光定量PCR方法探究中和性单克隆抗体对SVV-CH-HB2016毒株吸附过程的影响,最后用抗体相加试验来分析14株单克隆抗体的抗原表位。【结果】在蔗糖密度梯度为5%~45%(W/V)时获得了纯度较好、浓度较高的SVV-CH-HB2016毒株结构蛋白,免疫小鼠血清抗体效价均达到了1∶12800,成功制备了17株能稳定分泌特异性单克隆抗体的杂交瘤细胞株。经验证14株单克隆抗体能与重组结构蛋白发生Western blotting反应,17株单克隆抗体能与病毒发生IFA作用;2G6、4A3和4C113株单克隆抗体对SVV-CH-HB2016毒株感染的BHK-21细胞具有明显中和保护作用,也能有效抑制SVV-CH-HB2016毒株对293T细胞的吸附。经分析发现,除1F5与2E1、4B8与4F11外,其余10株单克隆抗体分别针对不同抗原表位。【结论】本研究初步建立了SVV的纯化方法,制备了17株特异性针对SVV-CH-HB2016毒株的单克隆抗体,为后期进一步开展SVV全病毒灭活疫苗的研发、ELISA检测方法的建立及保护性抗原表位的鉴定奠定了基础。展开更多
基金supported by grants from the National Natural Sciences Foundation of China(No.U1501213)the Key Development and Research Foundation of Yunnan(2018BB004)the Project Supported by National Science and Technology Ministry(2015BAD12B04)
文摘Seneca Valley virus (SVV), a newly determined etiological agent of vesicular disease in swine, causes porcine idiopathic disease and occasional acute death in piglets. Recently, an increased number of SVV infection cases have been reported in the United States (US) and China, resulting in significant economic losses to the swine industry. The first identification of SVV in China was reported in Guangdong Province, a major swine producing province. The cases of SVV were continuously reported in Guangdong in 2015 and 2016. However, the spread of SVV in Guangdong in 2017 remains unknown.In this study, we determined two new SVV strains, CH-GD-2017-1 and CH-GD-2017-2, from Guangdong. The genetic analysis suggested that the two Guangdong strains showed different characteristics to previous Guangdong strains. They showed lower nucleotide similarity with strains isolated in 2015 and 2016, and were more similar to the US strains.Phylogenetic analyses indicated that the new strains were clustered in a different clade with previous Guangdong strains.We found 28 mutated amino acids in the new strains, compared with the first Guangdong strain, SVV CH-01-2015. In the geographic analysis, we found that the US and China reported more SVV cases than other countries, and most of the SVV cases were reported in east and central China—of which, Guangdong Province is one of the major epidemic regions. In conclusion, our findings indicate that SVV continued to spread in Guangdong Province in 2017, and two different clades of SVVs have emerged in this region.
基金supported by the National Natural Science Foundation of China(31772749,31572495)the Fundamental Research Funds for the Central Universities(2662017PY108)Natural Science Foundation of Hubei Province(2019CFA010)。
文摘Cholesterol-25-hydroxylase(CH25 H)is a membrane protein associated with endoplasmic reticulum,and it is an interferon-stimulated factor regulated by interferon.CH25 H catalyzes cholesterol to produce 25-hydroxycholesterol(25 HC)by adding a second hydroxyl to the 25 th carbon atom of cholesterol.Recent studies have shown that both CH25 H and 25 HC could inhibit the replication of many viruses.In this study,we found that ectopic expression of CH25 H in HEK-293 T and BHK-21 cell lines could inhibit the replication of Seneca Valley virus(SVV)and that there was no species difference.On the other hand,the knockdown of CH25 H could enhance the replication of SVV in HEK-293 T and BHK-21 cells,indicating the importance of CH25 H.To some extent,the CH25 H mutant without hydroxylase activity also lost its ability to inhibit SVV amplification.Further studies demonstrated that 25 HC was involved in the entire life cycle of SVV,especially in repressing its adsorption process.This study reveals that CH25 H exerts the advantage of innate immunity mainly by producing 25 HC to block virion adsorption.
文摘【目的】纯化猪塞尼卡谷病毒(Seneca Valley virus,SVV)SVV-CH-HB2016毒株,并制备其结构蛋白VP1、VP2和VP3的单克隆抗体。【方法】以蔗糖密度梯度离心法纯化的SVV-CH-HB2016病毒颗粒作为抗原,免疫BALB/c小鼠,取脾细胞与骨髓瘤细胞(SP2/0)进行细胞融合。通过间接免疫荧光试验(IFA)结合间接ELISA筛选阳性细胞株,制备能特异性分泌针对结构蛋白的杂交瘤细胞株。采用Western blotting和IFA方法分别检测单克隆抗体与重组表达蛋白及天然结构蛋白的反应性,并对单克隆抗体的病毒中和保护效果进行测定。利用空斑试验和实时荧光定量PCR方法探究中和性单克隆抗体对SVV-CH-HB2016毒株吸附过程的影响,最后用抗体相加试验来分析14株单克隆抗体的抗原表位。【结果】在蔗糖密度梯度为5%~45%(W/V)时获得了纯度较好、浓度较高的SVV-CH-HB2016毒株结构蛋白,免疫小鼠血清抗体效价均达到了1∶12800,成功制备了17株能稳定分泌特异性单克隆抗体的杂交瘤细胞株。经验证14株单克隆抗体能与重组结构蛋白发生Western blotting反应,17株单克隆抗体能与病毒发生IFA作用;2G6、4A3和4C113株单克隆抗体对SVV-CH-HB2016毒株感染的BHK-21细胞具有明显中和保护作用,也能有效抑制SVV-CH-HB2016毒株对293T细胞的吸附。经分析发现,除1F5与2E1、4B8与4F11外,其余10株单克隆抗体分别针对不同抗原表位。【结论】本研究初步建立了SVV的纯化方法,制备了17株特异性针对SVV-CH-HB2016毒株的单克隆抗体,为后期进一步开展SVV全病毒灭活疫苗的研发、ELISA检测方法的建立及保护性抗原表位的鉴定奠定了基础。