期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Supercritical superprocesses: Proper normalization and non-degenerate strong limit 被引量:1
1
作者 Yan-Xia Ren Renming Song Rui Zhang 《Science China Mathematics》 SCIE CSCD 2019年第8期1519-1552,共34页
Suppose that X ={Xt, t≥0;Pμ} is a supercritical superprocess in a locally compact separable metric space E. Let φ0 be a positive eigenfunction corresponding to the first eigenvalue λ0 of the generator of the mean ... Suppose that X ={Xt, t≥0;Pμ} is a supercritical superprocess in a locally compact separable metric space E. Let φ0 be a positive eigenfunction corresponding to the first eigenvalue λ0 of the generator of the mean semigroup of X. Then Mt := e-λ0t〈φ0,Xt〉 is a positive martingale. Let M∞ be the limit of Mt. It is known(see Liu et al.(2009)) that M∞ is non-degenerate if and only if the L log L condition is satisfied. In this paper we are mainly interested in the case when the L log L condition is not satisfied. We prove that, under some conditions, there exist a positive function γt on [0,∞) and a non-degenerate random variable W such that for any finite nonzero Borel measure μ on E,lim/t→∞γt〈φ0,Xt〉=W, a.s.-Pμ.We also give the almost sure limit of γt〈f, Xt〉for a class of general test functions f. 展开更多
关键词 SUPERPROCESSES seneta-heyde norming non-degenerate STRONG LIMIT MARTINGALES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部