期刊文献+
共找到580篇文章
< 1 2 29 >
每页显示 20 50 100
Analysis of sensitivity to hydrate blockage risk in natural gas gathering pipeline
1
作者 Ao-Yang Zhang Meng Cai +4 位作者 Na Wei Hai-Tao Li Chao Zhang Jun Pei Xin-Wei Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2723-2733,共11页
During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and... During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety. 展开更多
关键词 Natural gas hydrates Gathering pipeline Temperature variation Hydrate formation rate Sensitivity analysis
下载PDF
On an isotropic porous solid cylinder:the analytical solution and sensitivity analysis of the pressure
2
作者 H.ASGHARI L.MILLER +1 位作者 R.PENTA J.MERODIO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1499-1522,共24页
Within this work,we perform a sensitivity analysis to determine the influence of the material input parameters on the pressure in an isotropic porous solid cylinder.We provide a step-by-step guide to obtain the analyt... Within this work,we perform a sensitivity analysis to determine the influence of the material input parameters on the pressure in an isotropic porous solid cylinder.We provide a step-by-step guide to obtain the analytical solution for a porous isotropic elastic cylinder in terms of the pressure,stresses,and elastic displacement.We obtain the solution by performing a Laplace transform on the governing equations,which are those of Biot's poroelasticity in cylindrical polar coordinates.We enforce radial boundary conditions and obtain the solution in the Laplace transformed domain before reverting back to the time domain.The sensitivity analysis is then carried out,considering only the derived pressure solution.This analysis finds that the time t,Biot's modulus M,and Poisson's ratio ν have the highest influence on the pressure whereas the initial value of pressure P_(0) plays a very little role. 展开更多
关键词 sensitivity analysis Laplace transform cylindrical polar coordinate Biot's modulus CYLINDER
下载PDF
Uncertainty and sensitivity analysis of in-vessel phenomena under severe accident mitigation strategy based on ISAA-SAUP program
3
作者 Hao Yang Ji-Shen Li +2 位作者 Zhi-Ran Zhang Bin Zhang Jian-Qiang Shan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期108-123,共16页
The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce... The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce considerable uncertainty.Therefore,in recent years,the field of severe accidents has shifted its focus toward applying uncertainty analysis methods to quantify uncertainty in safety assessment programs,known as“best estimate plus uncertainty(BEPU).”This approach aids in enhancing our comprehension of these programs and their further development and improvement.This study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation strategies.Through an Integrated Severe Accident Analysis Program(ISAA),numerical modeling and uncertainty analysis were conducted on severe accidents resulting from large break loss of coolant accidents.Seventeen uncertainty parameters of the ISAA program were meticulously screened.Using Wilks'formula,the developed uncertainty program code,SAUP,was employed to carry out Latin hypercube sampling,while ISAA was employed to execute batch calculations.Statistical analysis was then conducted on two figures of merit,namely hydrogen generation and the release of fission products within the pressure vessel.Uncertainty calculations revealed that hydrogen production and the fraction of fission product released exhibited a normal distribution,ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%,respectively.The ratio of hydrogen production to reactor thermal power fell within the range of 0.0578–0.105.A sensitivity analysis was performed for uncertain input parameters,revealing significant correlations between the failure temperature of the cladding oxide layer,maximum melt flow rate,size of the particulate debris,and porosity of the debris with both hydrogen generation and the release of fission products. 展开更多
关键词 Gen-III PWR Severe accident mitigation Wilks’formula HYDROGEN Fission products Uncertainty and sensitivity analysis
下载PDF
Explainable Neural Network for Sensitivity Analysis of Lithium-ion Battery Smart Production
4
作者 Kailong Liu Qiao Peng +2 位作者 Yuhang Liu Naxin Cui Chenghui Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1944-1953,共10页
Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control par... Battery production is crucial for determining the quality of electrode,which in turn affects the manufactured battery performance.As battery production is complicated with strongly coupled intermediate and control parameters,an efficient solution that can perform a reliable sensitivity analysis of the production terms of interest and forecast key battery properties in the early production phase is urgently required.This paper performs detailed sensitivity analysis of key production terms on determining the properties of manufactured battery electrode via advanced data-driven modelling.To be specific,an explainable neural network named generalized additive model with structured interaction(GAM-SI)is designed to predict two key battery properties,including electrode mass loading and porosity,while the effects of four early production terms on manufactured batteries are explained and analysed.The experimental results reveal that the proposed method is able to accurately predict battery electrode properties in the mixing and coating stages.In addition,the importance ratio ranking,global interpretation and local interpretation of both the main effects and pairwise interactions can be effectively visualized by the designed neural network.Due to the merits of interpretability,the proposed GAM-SI can help engineers gain important insights for understanding complicated production behavior,further benefitting smart battery production. 展开更多
关键词 Battery management battery manufacturing data science explainable artificial intelligence sensitivity analysis
下载PDF
A Bayesian multi-model inference methodology for imprecise momentindependent global sensitivity analysis of rock structures
5
作者 Akshay Kumar Gaurav Tiwari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期840-859,共20页
Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating du... Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully. 展开更多
关键词 Bayesian inference Multi-model inference Statistical uncertainty Global sensitivity analysis(GSA) Borgonovo’s indices Limited data
下载PDF
Numerical Analysis of Steady Smoldering of Biomass Rods
6
作者 Zhao Wentao Yu Guangxin +3 位作者 Zhang Yi Wang Youtang Zhou Dan He Fang 《燃烧科学与技术》 CAS CSCD 北大核心 2024年第5期507-519,共13页
Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensi... Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel. 展开更多
关键词 steady smoldering biomass rod numerical analysis 2D steady model sensitivity analysis
下载PDF
Numerical Analysis of Explosion Characteristics of Vent Gas From 18650 LiFePO_(4) Batteries With Different States of Charge
7
作者 Shi-Lin Wang Xu Gong +5 位作者 Li-Na Liu Yi-Tong Li Chen-Yu Zhang Le-Jun Xu Xu-Ning Feng Huai-Bin Wang 《电化学(中英文)》 CAS 北大核心 2024年第8期28-35,共8页
The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba... The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents. 展开更多
关键词 Combustion and explosion characteristics Explosion limit Laminar flame speed Adiabatic flame temperature Sensitivity analysis
下载PDF
Calculations and Sensitivity Analysis of Chlorine-,NO_(x)-,and Bromine-Depleting Cycles of Stratospheric Ozone
8
作者 Ibraheem Alelmi Sen Nieh 《Journal of Environmental Science and Engineering(B)》 CAS 2024年第2期53-69,共17页
This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozon... This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere. 展开更多
关键词 Ozone depletion 2-D model CHLORINE BROMINE nitrogen oxides sensitivity analysis total ozone abundance DU
下载PDF
Application of support vector machine in trip chaining pattern recognition and analysis of explanatory variable effects 被引量:2
9
作者 杨硕 邓卫 程龙 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期106-114,共9页
In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purpos... In order to improve the accuracy of travel demand forecast and considering the distribution of travel behaviors within time dimension, a trip chaining pattern recognition model was established based on activity purposes by applying three methods: the support vector machine (SVM) model, the radial basis function neural network (RBFNN) model and the multinomial logit (MNL) model. The effect of explanatory factors on trip chaining behaviors and their contribution to model performace were investigated by sensitivity analysis. Results show that the SVM model has a better performance than the RBFNN model and the MNL model due to its higher overall and partial accuracy, indicating its recognition advantage under a smai sample size scenario. It is also proved that the SVM model is capable of estimating the effect of multi-category factors on trip chaining behaviors more accurately. The different contribution of explanatory, factors to trip chaining pattern recognition reflects the importance of refining trip chaining patterns ad exploring factors that are specific to each pattern. It is shown that the SVM technology in travel demand forecast modeling and analysis of explanatory variable effects is practical. 展开更多
关键词 trip chaining patterns support vector machine recognition performance sensitivity analysis
下载PDF
Sensitivity analysis for stochastic user equilibrium with elastic demand assignment model
10
作者 王建 吴鼎新 邓卫 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期363-367,共5页
This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables... This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables with respect to the perturbation parameters for the SUEED model. Then by taking advantage of the gradient-based method for sensitivity analysis of a general nonlinear program, detailed formulae are developed for calculating the derivatives of designed variables with respect to perturbation parameters at the equilibrium state of the SUEED model. This method is not only applicable for a sensitivity analysis of the logit-type SUEED problem, but also for the probit-type SUEED problem. The application of the proposed method in a numerical example shows that the proposed method can be used to approximate the equilibrium link flow solutions for both logit-type SUEED and probit-type SUEED problems when small perturbations are introduced in the input parameters. 展开更多
关键词 network modeling stochastic user equilibrium elastic demand sensitivity analysis first-order approximation
下载PDF
Stability analysis of a concrete gravity dam and its foundation 被引量:1
11
作者 Itoya Emioshor 赵引 Martins Y.Otache 《Journal of Southeast University(English Edition)》 EI CAS 2004年第4期508-512,共5页
The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its f... The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load. 展开更多
关键词 Concrete dams Elastoplasticity Finite element method Nonlinear equations Safety factor Sensitivity analysis Shear strength
下载PDF
Separation of Comprehensive Geometrical Errors of a 3-DOF Parallel Manipulator Based on Jacobian Matrix and Its Sensitivity Analysis with Monte-Carlo Method 被引量:16
12
作者 SUN Tao SONG Yimin +1 位作者 LI Yonggang2 XU Liang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期406-413,共8页
Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attract... Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attracting much attention.Compared with extensive researches focus on their type/dimensional synthesis,kinematic/dynamic analyses,the error modeling and separation issues in PKMs are not studied adequately,which is one of the most important obstacles in its commercial applications widely.Taking a 3-PRS parallel manipulator as an example,this paper presents a separation method of source errors for 3-DOF parallel manipulator into the compensable and non-compensable errors effectively.The kinematic analysis of 3-PRS parallel manipulator leads to its six-dimension Jacobian matrix,which can be mapped into the Jacobian matrix of actuations and constraints,and then the compensable and non-compensable errors can be separated accordingly.The compensable errors can be compensated by the kinematic calibration,while the non-compensable errors may be adjusted by the manufacturing and assembling process.Followed by the influence of the latter,i.e.,the non-compensable errors,on the pose error of the moving platform through the sensitivity analysis with the aid of the Monte-Carlo method,meanwhile,the configurations of the manipulator are sought as the pose errors of the moving platform approaching their maximum.The compensable and non-compensable errors in limited-DOF parallel manipulators can be separated effectively by means of the Jacobian matrix of actuations and constraints,providing designers with an informative guideline to taking proper measures for enhancing the pose accuracy via component tolerancing and/or kinematic calibration,which can lay the foundation for the error distinguishment and compensation. 展开更多
关键词 parallel kinematic machines (PKMs) limited-degree-of-freedom (limited-DOF) error separation accuracy analysis Jacobian matrix compensable error non-compensable error sensitivity analysis
下载PDF
Error Modeling and Sensitivity Analysis of a Parallel Robot with SCARA(Selective Compliance Assembly Robot Arm) Motions 被引量:19
13
作者 CHEN Yuzhen XIE Fugui +1 位作者 LIU Xinjun ZHOU Yanhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期693-702,共10页
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parall... Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration. 展开更多
关键词 parallel robot selective compliance assembly robot arm(SCARA) motions error modeling sensitivity analysis parallelogram structure
下载PDF
Cost-effectiveness analysis of population-based screening of hepatocellular carcinoma: Comparing ultrasonography with two-stage screening 被引量:13
14
作者 Ming-Jeng Kuo Hsiu-Hsi Chen +8 位作者 Chi-Ling Chen Jean Ching-Yuan Fann Sam Li-Sheng Chen Sherry Yueh-Hsia Chiu Yu-Min Lin Chao-Sheng Liao Hung-Chuen Chang Yueh-Shih Lin Amy Ming-Fang Yen 《World Journal of Gastroenterology》 SCIE CAS 2016年第12期3460-3470,共11页
AIM: To assess the cost-effectiveness of two populationbased hepatocellular carcinoma(HCC) screening programs, two-stage biomarker-ultrasound method and mass screening using abdominal ultrasonography(AUS).METHODS: In ... AIM: To assess the cost-effectiveness of two populationbased hepatocellular carcinoma(HCC) screening programs, two-stage biomarker-ultrasound method and mass screening using abdominal ultrasonography(AUS).METHODS: In this study, we applied a Markov decision model with a societal perspective and a lifetime horizon for the general population-based cohorts in an area with high HCC incidence, such as Taiwan. The accuracy of biomarkers and ultrasonography was estimated from published meta-analyses. The costs of surveillance, diagnosis, and treatment were based on a combination of published literature, Medicare payments, and medical expenditure at the National Taiwan University Hospital. The main outcome measure was cost per lifeyear gained with a 3% annual discount rate. RESULTS: The results show that the mass screening using AUS was associated with an incremental costeffectiveness ratio of USD39825 per life-year gained, whereas two-stage screening was associated with an incremental cost-effectiveness ratio of USD49733 per life-year gained, as compared with no screening. Screening programs with an initial screening age of 50 years old and biennial screening interval were the most cost-effective. These findings were sensitive to the costs of screening tools and the specificity of biomarker screening.CONCLUSION: Mass screening using AUS is more cost effective than two-stage biomarker-ultrasound screening. The most optimal strategy is an initial screening age at 50 years old with a 2-year inter-screening interval. 展开更多
关键词 Two-stage biomarker-ultrasound screening One-stage abdominal ultrasonography screening Markov model COST-EFFECTIVENESS Sensitivity analysis Age
下载PDF
Nonlinear Mathematical Modeling and Sensitivity Analysis of Hydraulic Drive Unit 被引量:12
15
作者 KONG Xiangdong YU Bin +2 位作者 QUAN Lingxiao BA Kaixian WU Liujie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期999-1011,共13页
The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displa... The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit. 展开更多
关键词 nonlinear mathematical model hydraulic drive unit valve-controlled symmetrical cylinder sensitivity analysis sensitivity index
下载PDF
Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency 被引量:10
16
作者 Li Haibo Li Xiaofeng +2 位作者 Li Jianchun Xia Xiang Wang Xiaowei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第1期153-162,共10页
Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational... Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the first- period blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions. 展开更多
关键词 grey relational analysis dimensional analysis sensitivity analysis dominant vibration frequency PREDICTION
下载PDF
Improved Reliability Analysis Method Based on the Failure Assessment Diagram 被引量:9
17
作者 ZHOU Yu ZHANG Zheng ZHONG Qunpeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期832-837,共6页
With the uncertainties related to operating conditions,in-service non-destructive testing(NDT) measurements and material properties considered in the structural integrity assessment,probabilistic analysis based on t... With the uncertainties related to operating conditions,in-service non-destructive testing(NDT) measurements and material properties considered in the structural integrity assessment,probabilistic analysis based on the failure assessment diagram(FAD) approach has recently become an important concern.However,the point density revealing the probabilistic distribution characteristics of the assessment points is usually ignored.To obtain more detailed and direct knowledge from the reliability analysis,an improved probabilistic fracture mechanics(PFM) assessment method is proposed.By integrating 2D kernel density estimation(KDE) technology into the traditional probabilistic assessment,the probabilistic density of the randomly distributed assessment points is visualized in the assessment diagram.Moreover,a modified interval sensitivity analysis is implemented and compared with probabilistic sensitivity analysis.The improved reliability analysis method is applied to the assessment of a high pressure pipe containing an axial internal semi-elliptical surface crack.The results indicate that these two methods can give consistent sensitivities of input parameters,but the interval sensitivity analysis is computationally more efficient.Meanwhile,the point density distribution and its contour are plotted in the FAD,thereby better revealing the characteristics of PFM assessment.This study provides a powerful tool for the reliability analysis of critical structures. 展开更多
关键词 reliability analysis failure assessment diagram probabilistic fracture mechanics kernel density estimation sensitivity analysis
下载PDF
Quantitative investigation on micro-parameters of cemented paste backfill and its sensitivity analysis 被引量:11
18
作者 LIU Lang ZHOU Peng +2 位作者 FENG Yan ZHANG Bo SONG Ki-il 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期267-276,共10页
The mechanical properties of cemented paste backfill(CPB) depend heavily on its pore structural characteristics and micro-structural changes. In order to explore the variation mechanisms of macro-mechanical characteri... The mechanical properties of cemented paste backfill(CPB) depend heavily on its pore structural characteristics and micro-structural changes. In order to explore the variation mechanisms of macro-mechanical characteristics and micro-structure of CPB. CPB specimens with different mass concentrations prepared from the full tailings of Xianglushan Tungsten Ore were micro-tests. Moreover, acquired pore digital images were processed by using the pores(particles) and cracks analysis system(PCAS), and a sensitivity analysis was performed. The results show that as the mass concentration of CPB increases from 70% to 78%, the porosity, the average pore area and the number of pores drop overall, leading to a decline in the pores opening degree and enhancing the mechanical characteristics. As the mass concentration of CPB increases, the trend of fractal dimension, probability entropy and roundness is reduced, constant and increased, which can result in an enhancement of the uniformity, an unchanged directionality and more round pores. According to the definition of sensitivity, the sensitivities of various micro-parameters were calculated and can be ranked as porosity > average pore area > number of pores > roundness > fractal dimension > probability entropy. 展开更多
关键词 cemented paste backfill mass concentration sensitivity analysis micro-parameters
下载PDF
Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade 被引量:10
19
作者 GAO Qiang CAI Xin +1 位作者 GUO Xing-wen MENG Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1746-1754,共9页
The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris... The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter. 展开更多
关键词 wind turbine blade aeroelastic model classical flutter parameter sensitivities analysis
下载PDF
Parameter identification and global sensitivity analysis of Xin'anjiang model using meta-modeling approach 被引量:13
20
作者 Xiao-meng SONG Fan-zhe KONG +2 位作者 Che-sheng ZHAN Ji-wei HAN Xin-hua ZHANG 《Water Science and Engineering》 EI CAS CSCD 2013年第1期1-17,共17页
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana... Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model. 展开更多
关键词 Xin'anjiang model global sensitivity analysis parameter identification meta-modeling approach response surface model
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部