期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comparison of marine controlled-source electromagnetic data acquisition systems by a reservoir sensitivity index:analyzing the effect of water depths 被引量:9
1
作者 GUO Zhenwei DONG Hefeng LIU Jianxin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第11期113-119,共7页
During the past ten years, a marine controlled source electromagnetic(CSEM) method has been developed rapidly as a technology for hydrocarbon exploration. For shallow water environments, two CSEM data acquisition sy... During the past ten years, a marine controlled source electromagnetic(CSEM) method has been developed rapidly as a technology for hydrocarbon exploration. For shallow water environments, two CSEM data acquisition systems: Seabed Logging(SBL) and towed streamer electromagnetics(TSEM) have been developed in recent years. The purpose is to compare the performance of the SBL and TSEM systems at different water depths. Three different methods for the comparison are presented. The first method is a quick one dimensional sensitivity modelling. As a result, the sensitivity of marine CSEM data increases with water depth for the SBL system. Further, the sensitivity decreases with the increasing water depth for the TSEM system. The two other methods use two dimensional synthetic data from a simple 2-D isotropic model. The second method is a reservoir sensitivity index(RSI) method which has been developed to provide a quick comparison of the two systems. The RSI is calculated as the amplitude of the scattered field dividing by data uncertainty. From the calculations, it is found that with the increasing water depth RSI increases for the SBL system, while it decreases for the TSEM system. The third method uses Occam's inversion, and applies an anomaly transverse resistance(ATR) ratio for evaluating the resulting resistivity image. In shallow water environments, the resolution of the CSEM inversion results is good for both the SBL and TSEM systems. In deep water environments, the resolution of the CSEM inversion is better for the SBL system than for the TSEM system. The ATR ratios of the resistivity images show the similar conclusion. The SBL data acquisition system has an advantage in deep water environments. The TSEM system, on the other hand, is preferable for the shallow water environments. 展开更多
关键词 controlled-source electromagnetic reservoir sensitivity index seabed logging towed streamerelectromagnetic
下载PDF
Tight sandstone reservoir sensitivity and damage mechanism analysis: A case study from Ordos Basin, China and implications for reservoir damage prevention 被引量:2
2
作者 Zhongquan Liu Bingbing Shi +7 位作者 Tianchen Ge Fenggui Sui Yue Wang Pengfei Zhang Xiangchun Chang Ye Liu Yongrui Wang Zhaoyang Wang 《Energy Geoscience》 2022年第4期394-416,共23页
Analysis of reservoir sensitivity to velocity,water,salt,acid,alkali and stress is critical for reservoir protection.To study the tight sandstone reservoir sensitivity at different formation depths(effective stress)an... Analysis of reservoir sensitivity to velocity,water,salt,acid,alkali and stress is critical for reservoir protection.To study the tight sandstone reservoir sensitivity at different formation depths(effective stress)and formation water conditions(pH,salinity,and fluid velocity),a series of dynamic core flow tests under different pH,salinity,acid,and effective stress conditions were performed on samples from tight sandstone reservoirs of the Upper Triassic Yanchang 8(T_(3)y^(8))Member and conventional reservoirs of the Middle-Lower Jurassic Yan'an 9(J_(1-2)y^(9))Member in the Ordos Basin.The results indicate that,compared with the conventional reservoirs,the tight sandstone reservoirs are more sensitive to velocity and stress,less sensitive to water,alkali and salinity,and respond better to acid fracturing.In addition,the critical conditions(salinity,velocity,pH,and stress)for pumping drilling,completion,and fracturing fluids into tight sandstone reservoirs were investigated.A combination of scanning electron microscopy coupled with energy-dispersive spectrometry(SEM-EDS),cathodoluminescence(CL),casting thin section(CTS)and nuclear magnetic resonance(NMR)images,high-pressure mercury injection capillary pressure(MICP)measurements as well as X-ray fluorescence spectral(XRF)analyses were employed to analyze the damage mechanisms of the conventional reservoirs(J_(1-2)y^(9))and tight sandstone reservoirs(T_(3)y^(8))caused by fluid invasion.The results suggest that reservoir sensitivity is primarily conditioned by the composition of detrital components and interstitial fillings,petrophysical properties,pore-throat structure,and diagenetic facies.All these factors control the sensitivity types and extent of the reser-voirs.Our results indicate that the poorer the reservoir physical properties,the stronger the reservoir heterogeneity and sensitivity,implying that tight sandstone reservoirs are more susceptible to changes in fluids than conventional reservoirs.This study offers insights into the reservoir damage types and helps to improve the design and implementation of protection measures for tight sandstone reservoir exploration. 展开更多
关键词 Formation damage prevention reservoir sensitivity Tight sandstone reservoir Yanchang Formation Ordos basin
下载PDF
Stress sensitivity of formation during multi-cycle gas injection and production in an underground gas storage rebuilt from gas reservoirs 被引量:1
3
作者 LI Jiqiang ZHAO Guanqun +5 位作者 QI Zhilin YIN Bingyi XU Xun FANG Feifei YANG Shenyao QI Guixue 《Petroleum Exploration and Development》 CSCD 2021年第4期968-977,共10页
Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of... Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of stress sensitivity of permeability.A method for calculating permeability under overburden pressure in the multi-cycle injection and production process was proposed,and the effect of stress sensitivity of reservoir permeability on gas well injectivity and productivity in UGS was analyzed.Retention rate of permeability decreased sharply first and then slowly with the increase of the UGS cycles.The stress sensitivity index of permeability decreased with the increase of cycle number of net stress variations in the increase process of net stress.The stress sensitivity index of permeability hardly changed with the increase of cycle number of net stress variations in the decrease process of net stress.With the increase of cycle number of net stress variation,the stress sensitivity index of permeability in the increase process of net stress approached that in the decrease process of net stress.The lower the reservoir permeability,the greater the irreversible permeability loss rate,the stronger the cyclic stress sensitivity,and the higher the stress sensitivity index of the reservoir,the stronger the reservoir stress sensitivity.The gas zones with permeability lower than 0.3’10-3 mm2 are not suitable as gas storage regions.Stress sensitivity of reservoir permeability has strong impact on gas well injectivity and productivity and mainly in the first few cycles. 展开更多
关键词 gas storage rebuilt from gas reservoirs multi-cycle injection and production reservoir stress sensitivity injection and production capacity gas storage layer selection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部