Marine in situ testing is a necessary step for stereotyping newly developed marine sensors. The use of test sites in the Yangtze Estuary area, which has high turbidity and abundant nutrients, can effectively reduce th...Marine in situ testing is a necessary step for stereotyping newly developed marine sensors. The use of test sites in the Yangtze Estuary area, which has high turbidity and abundant nutrients, can effectively reduce the needed testing time owing to its harsh conditions. Five test stations were established, and a floating buoy and fixed test equipment were designed. A control system, including a sensor connection, data processor, video remote transmission, and corresponding control algorithm, was developed. The control system enabled the nondestructive monitoring of biological attachments and bidirectional, real-time communication between an upper server on land and the control system at the test sites. The dissolved oxygen(DO), temperature, and pH data of DOS600 and DPS600 sensors were compared with those of AP2000 sensors. Temperature recording using the DOS600 sensor was performed nearly as well as that of the AP2000 sensor. The mean DO values(standard deviations) were 8.414 mg L-1(2.068) and 6.896 mg L-1(1.235) for the DOS600 and AP2000 sensors, respectively, indicating that the DOS600 performance was unsatisfactory. The pH recording of the DPS600 was slightly worse than that of the AP2000 sensor. Experimental results showed that the DO value was more easily affected by the buoy movement of waves compared to the pH and temperature. Moreover, data fluctuations showed that the DO and pH parameters were more vulnerable to biofouling than temperature. Waves and biofouling create a harsh test environment, and the performance difference between the developed sensors and a standard sensor can be obtained in a short time period.展开更多
For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar c...For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.展开更多
The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments...The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions.展开更多
In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, T...In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, The optical fiber sensor was placed between two permanent magnets with the N-pole. Therefore, the optical fiber sensing system was built to detect the defective ferromagnetic objects. Theoretical and experimental studies shown that the system can identify a little defects, such as irons’ blind hole (diameter φ =?3mm , depth t = 4mm?), irons’ grooves (length l= 30mm , width?ω = 10mm ), hole (φ?=?3mm ) and crackle etc. The system has the characteristics of small size, high sensitivity, fast signal response and high resolution. In terms of the defective oil and gas pipelines detection, The optical fiber sensing system is used in non-destructive testing, which will be valuable and meaningful.展开更多
This study introduced at first the background of numerous highway widening projects that have been developed in recent years in China.Using a large ground settlement simulator and a fiber Bragg grating (FBG) strain se...This study introduced at first the background of numerous highway widening projects that have been developed in recent years in China.Using a large ground settlement simulator and a fiber Bragg grating (FBG) strain sensor network system,a large-scale model test,with a similarity ratio of 1:2,was performed to analyze the influence of differential settlement between new and old subgrades on pavement structure under loading condition.The result shows that excessive differential settlement can cause considerable tensile strain in the pavement structure of a widened road,for which a maximum value (S) of 6 cm is recommended.Under the repetitive load,the top layers of pavement structure are subjected to the alternate action of tensile and compressive strains,which would eventually lead to a fatigue failure of the pavement.However,application of geogrid to the splice between the new and the old roads can reduce differential settlement to a limited extent.The new subgrade of a widened road is vulnerable to the influence of dynamic load transferred from the above pavement structures.While for the old subgrade,due to its comparatively high stiffness,it can well spread the load on the pavement statically or dynamically.The test also shows that application of geogrid can effectively prevent or defer the failure of pavement structure.With geogrid,the modulus of resilience of the subgrade is increased and inhomogeneous deformation can be reduced;therefore,the stress/strain distribution in pavement structure under loading condition becomes uniform.The results obtained in this context are expected to provide a helpful reference for structural design and maintenance strategy for future highway widening projects.展开更多
Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on...Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on defect testing results by using stress wave in terms of image fitting degree and error rate. The results showed that for logs with diameter ranging from 20 to 40 cm, at least 12 sensors were needed to meet the requirement which ensure a high testing accuracy of roughly 90% of fitness with 0.1 of error rate. And 10 sensors were recommended to judge the possible locations of defects and 6 sensors were sufficient to decide whether there were defects or not.展开更多
When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include ...When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include those systems with interdependent sensorobservations and any network structure. It is also valid for m-ary Bayesian decision problems andbinary problems under the Neyman-Pearson criterion. Local decision rules of a sensor withcommunication from other sensors that are optimal for the sensor itself are also presented, whichtake the form of a generalized likelihood ratio test. Numerical examples are given to reveal someinteresting phenomena that communication between sensors can improve performance of a senordecision, but cannot guarantee to improve the global fusion performance when sensor rules were givenbefore fusing.展开更多
To ensure the accuracy and precision of vibration test,a universal checking method is proposed.The use of the method is discussed and an actual example is given.First,the calibration of the 7703A-500 type sensor is an...To ensure the accuracy and precision of vibration test,a universal checking method is proposed.The use of the method is discussed and an actual example is given.First,the calibration of the 7703A-500 type sensor is analyzed on the basis of frequency response method.The frequency range of normal working can be determined by the exact calibration of sensitivity,frequency response and linearity.For the basic problem of abnormal signals appearing in test system,the method of zero check and loading vibration source are developed.The frequency spectrum of output signals is employed to distinguish the noise signal,unknown source signal and useful signal effectively.Finally,the experimental results reveal the importance to improve the accuracy of the results of practical vibration test.展开更多
A thimble zirconia oxygen sensor electrolyte and their interface were observed with was prepared with YSZ. The surfaces of the Pt electrode, a scanning electron microscope (SEM).The sensor was examined with engine b...A thimble zirconia oxygen sensor electrolyte and their interface were observed with was prepared with YSZ. The surfaces of the Pt electrode, a scanning electron microscope (SEM).The sensor was examined with engine bench test to evaluate the essential performance. The basic function such as electromotive force output and response time was discussed. The oscillograph trace was also obtained and analyzed with four different frequencies. The experimental results reveal that the oxygen sensor has high performances meeting the demands of practical applications..展开更多
Profiles observed by Sea-Wing underwater gliders are widely applied in scientific research. However, the quality control(QC) of these data has received little attention. The mismatch between the temperature probe and ...Profiles observed by Sea-Wing underwater gliders are widely applied in scientific research. However, the quality control(QC) of these data has received little attention. The mismatch between the temperature probe and conductivity cell response times generates erroneous salinities, especially across a strong thermocline. A sensor drift may occur owing to biofouling and biocide leakage into the conductivity cell when a glider has operated for several months. It is therefore critical to design a mature real-time QC procedure and develop a toolbox for the QC of Sea-Wing glider data. On the basis of temperature and salinity profiles observed by several Sea-Wing gliders each installed with a Sea-Bird Glider Payload CTD sensor, a real-time QC method including a thermal lag correction, Argo-equivalent real-time QC tests, and a simple post-processing procedure is proposed. The method can also be adopted for Petrel gliders.展开更多
Thimble zirconia oxygen sensors were prepared with yttria stabilized zirconia(YSZ). The surfaces of the electrode, electrolyte and their interface were observed by scanning electron microscope(SEM). The sensor was exa...Thimble zirconia oxygen sensors were prepared with yttria stabilized zirconia(YSZ). The surfaces of the electrode, electrolyte and their interface were observed by scanning electron microscope(SEM). The sensor was examined with engine bench test to evaluate the essential performance. The results show that the oxygen sensor has good performance, which can meet the demand of practical applications. Chemical equilibrium theory was introduced to explain electromotive force of the sensors and the influence of temperature on the signals. The educed theoretical model of electromotive force agrees well with testing results.展开更多
A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the forc...A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the force and moment isotropy and some structural parameters is deduced.Orthogonal test methods are used to determine the degree of primary and secondary factors that have significant effect on sensor characteristics.Furthermore,the relationship between each performance index and the structural parameters of the sensor is analyzed by the method of the atlas,which lays a foundation for structural optimization design of the force sensor.展开更多
Eddy-current (EC) testing is an effective electromagnetic non-destructive testing (NDT) technique.Planar eddy-current sensor arrays have several advantages such as good coherence,fast response speed,and high sensitivi...Eddy-current (EC) testing is an effective electromagnetic non-destructive testing (NDT) technique.Planar eddy-current sensor arrays have several advantages such as good coherence,fast response speed,and high sensitivity,which can be used for micro-damage inspection of crucial parts in mechanical equipments and aerospace aviation.The main purpose of this research is to detect the defect in a metallic material surface and identify the length of a crack using planar eddy-current sensor arrays in different directions.The principle and characteristics of planar eddy-current sensor arrays are introduced,and a crack length quantification algorithm in different directions is investigated.A damage quantitative detection system is established based on a field programmable gate array and ARM processor.The system is utilized to inspect the micro defect in a metallic material,which is carved to micro crack with size of 7mm(length)×0.1mm(width)×1mm(depth).The experimental data show that the sensor arrays can be used for the length measurement repeatedly,and that the uncertainty of the length measurement is below ±0.2mm.展开更多
The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testi...The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testing is an important method for research on dynamic identification and vibration mechanisms. Research on optimal sensor placement has become a very important topic due to the need to obtain effective testing information from limited test resources. To overcome inadequacies of the present methods, this paper puts forward the triaxial effective independence driving-point residue (EfI3-DPR3) method for optimal sensor placement. The Efl3-DPR3 method can incorporate both the maximum triaxial modal kinetic energy and linear independence of the triaxial target modes at the selected nodes. It was applied to the optimal placement oftriaxial sensors for vibration testing in a hydropower house, and satisfactory results were obtained. This method can provide some guidance for optimal placement of triaxial sensors of underground powerhouses.展开更多
Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to...Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to complete measurements. To protect the magnetic field sensors from intense erosion and high pressure, suitable high-pressure sealed cabins must be designed to load them. For the consideration of magnetic measurement and marine operation, the sealed pressure cabin should be nonmagnetic and transportable. Among all optional materials, LC4 super.hard aluminum alloy has the highest performance of price/quality ratio to make the sealed pressure cabin. However, it does not mean that the high-pressure sealed cabin made using LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure cabin made using LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect does not affect the use of the magnetic field sensor, but if we want to eliminate its effect, we should study it by experimental measurements. In our experiment tests, frequency sweep magnetic field as excitation signal was used, and then responses of the magnetic field sensor before and after being loaded into the high-pressure sealed cabin were measured. Finally, normalized abnormal curves for the frequency responses were obtained, through which we could show how the high-pressure sealed cabin produces effects on the responses of the magnetic field sensor. Experimental results suggest that the response distortion induced by the sealed pressure cabin appears on mid- and high-frequency areas. Using experimental results as standardization data, the frequency responses collected from seafloor magnetotelluric measurements can be corrected to restore real information about the seafloor field source.展开更多
基金supported by the National Key Research and Development Plan(No.2019YFD0901300)the Shanghai Science and Technology Innovation Action Plan(No.16DZ1205100)the Shanghai Agriculture Applied Technology Development Program(No.T20180303)。
文摘Marine in situ testing is a necessary step for stereotyping newly developed marine sensors. The use of test sites in the Yangtze Estuary area, which has high turbidity and abundant nutrients, can effectively reduce the needed testing time owing to its harsh conditions. Five test stations were established, and a floating buoy and fixed test equipment were designed. A control system, including a sensor connection, data processor, video remote transmission, and corresponding control algorithm, was developed. The control system enabled the nondestructive monitoring of biological attachments and bidirectional, real-time communication between an upper server on land and the control system at the test sites. The dissolved oxygen(DO), temperature, and pH data of DOS600 and DPS600 sensors were compared with those of AP2000 sensors. Temperature recording using the DOS600 sensor was performed nearly as well as that of the AP2000 sensor. The mean DO values(standard deviations) were 8.414 mg L-1(2.068) and 6.896 mg L-1(1.235) for the DOS600 and AP2000 sensors, respectively, indicating that the DOS600 performance was unsatisfactory. The pH recording of the DPS600 was slightly worse than that of the AP2000 sensor. Experimental results showed that the DO value was more easily affected by the buoy movement of waves compared to the pH and temperature. Moreover, data fluctuations showed that the DO and pH parameters were more vulnerable to biofouling than temperature. Waves and biofouling create a harsh test environment, and the performance difference between the developed sensors and a standard sensor can be obtained in a short time period.
基金supported by the Central University Basic Research Professional Expenses Special Foundation of Harbin Engineering University (Grant No. HEUCFL10101109)
文摘For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.
文摘The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions.
文摘In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, The optical fiber sensor was placed between two permanent magnets with the N-pole. Therefore, the optical fiber sensing system was built to detect the defective ferromagnetic objects. Theoretical and experimental studies shown that the system can identify a little defects, such as irons’ blind hole (diameter φ =?3mm , depth t = 4mm?), irons’ grooves (length l= 30mm , width?ω = 10mm ), hole (φ?=?3mm ) and crackle etc. The system has the characteristics of small size, high sensitivity, fast signal response and high resolution. In terms of the defective oil and gas pipelines detection, The optical fiber sensing system is used in non-destructive testing, which will be valuable and meaningful.
文摘This study introduced at first the background of numerous highway widening projects that have been developed in recent years in China.Using a large ground settlement simulator and a fiber Bragg grating (FBG) strain sensor network system,a large-scale model test,with a similarity ratio of 1:2,was performed to analyze the influence of differential settlement between new and old subgrades on pavement structure under loading condition.The result shows that excessive differential settlement can cause considerable tensile strain in the pavement structure of a widened road,for which a maximum value (S) of 6 cm is recommended.Under the repetitive load,the top layers of pavement structure are subjected to the alternate action of tensile and compressive strains,which would eventually lead to a fatigue failure of the pavement.However,application of geogrid to the splice between the new and the old roads can reduce differential settlement to a limited extent.The new subgrade of a widened road is vulnerable to the influence of dynamic load transferred from the above pavement structures.While for the old subgrade,due to its comparatively high stiffness,it can well spread the load on the pavement statically or dynamically.The test also shows that application of geogrid can effectively prevent or defer the failure of pavement structure.With geogrid,the modulus of resilience of the subgrade is increased and inhomogeneous deformation can be reduced;therefore,the stress/strain distribution in pavement structure under loading condition becomes uniform.The results obtained in this context are expected to provide a helpful reference for structural design and maintenance strategy for future highway widening projects.
基金This paper was supported by the project "Devel-opment of Portable NDT Instrument (2002(39-1))" sponsored by Na-tional Forestry Administrative Bureau of China
文摘Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on defect testing results by using stress wave in terms of image fitting degree and error rate. The results showed that for logs with diameter ranging from 20 to 40 cm, at least 12 sensors were needed to meet the requirement which ensure a high testing accuracy of roughly 90% of fitness with 0.1 of error rate. And 10 sensors were recommended to judge the possible locations of defects and 6 sensors were sufficient to decide whether there were defects or not.
文摘When all the rules of sensor decision are known, the optimal distributeddecision fusion, which relies only on the joint conditional probability densities, can be derivedfor very general decision systems. They include those systems with interdependent sensorobservations and any network structure. It is also valid for m-ary Bayesian decision problems andbinary problems under the Neyman-Pearson criterion. Local decision rules of a sensor withcommunication from other sensors that are optimal for the sensor itself are also presented, whichtake the form of a generalized likelihood ratio test. Numerical examples are given to reveal someinteresting phenomena that communication between sensors can improve performance of a senordecision, but cannot guarantee to improve the global fusion performance when sensor rules were givenbefore fusing.
基金Shan Dong Scientific Research Foundation for Excellent Young Scientists(Grant No:BS2011ZZ001)National Natural Science Foundation of China(Grant No.51105172)
文摘To ensure the accuracy and precision of vibration test,a universal checking method is proposed.The use of the method is discussed and an actual example is given.First,the calibration of the 7703A-500 type sensor is analyzed on the basis of frequency response method.The frequency range of normal working can be determined by the exact calibration of sensitivity,frequency response and linearity.For the basic problem of abnormal signals appearing in test system,the method of zero check and loading vibration source are developed.The frequency spectrum of output signals is employed to distinguish the noise signal,unknown source signal and useful signal effectively.Finally,the experimental results reveal the importance to improve the accuracy of the results of practical vibration test.
文摘A thimble zirconia oxygen sensor electrolyte and their interface were observed with was prepared with YSZ. The surfaces of the Pt electrode, a scanning electron microscope (SEM).The sensor was examined with engine bench test to evaluate the essential performance. The basic function such as electromotive force output and response time was discussed. The oscillograph trace was also obtained and analyzed with four different frequencies. The experimental results reveal that the oxygen sensor has high performances meeting the demands of practical applications..
基金The National Natural Science Foundation under contract Nos 41621064, 41606003, U1709202 and U1811464the National Key R&D Program of China under contract No. 2016YFC0301201the China Association of Marine Affairs (“Study on the feasibility of establishing an international data sharing application platform for smart ocean”).
文摘Profiles observed by Sea-Wing underwater gliders are widely applied in scientific research. However, the quality control(QC) of these data has received little attention. The mismatch between the temperature probe and conductivity cell response times generates erroneous salinities, especially across a strong thermocline. A sensor drift may occur owing to biofouling and biocide leakage into the conductivity cell when a glider has operated for several months. It is therefore critical to design a mature real-time QC procedure and develop a toolbox for the QC of Sea-Wing glider data. On the basis of temperature and salinity profiles observed by several Sea-Wing gliders each installed with a Sea-Bird Glider Payload CTD sensor, a real-time QC method including a thermal lag correction, Argo-equivalent real-time QC tests, and a simple post-processing procedure is proposed. The method can also be adopted for Petrel gliders.
文摘Thimble zirconia oxygen sensors were prepared with yttria stabilized zirconia(YSZ). The surfaces of the electrode, electrolyte and their interface were observed by scanning electron microscope(SEM). The sensor was examined with engine bench test to evaluate the essential performance. The results show that the oxygen sensor has good performance, which can meet the demand of practical applications. Chemical equilibrium theory was introduced to explain electromotive force of the sensors and the influence of temperature on the signals. The educed theoretical model of electromotive force agrees well with testing results.
基金supported by the Open Foundation of Graduate Innovation Base(Laboratory)of Nanjing University of Aeronautics and Astronautics (No.kfjj20170512)the National Natural Science Foundation of China(No. 51175263)
文摘A six-axis force sensor with parallel 8/4-4 structure is introduced and its measurement principle is analyzed.Based on condition numbers of Jacobian matrix spectral norm of the sensor,the relationship between the force and moment isotropy and some structural parameters is deduced.Orthogonal test methods are used to determine the degree of primary and secondary factors that have significant effect on sensor characteristics.Furthermore,the relationship between each performance index and the structural parameters of the sensor is analyzed by the method of the atlas,which lays a foundation for structural optimization design of the force sensor.
基金supported by the National Natural Science Foundation of China (No.61171460)
文摘Eddy-current (EC) testing is an effective electromagnetic non-destructive testing (NDT) technique.Planar eddy-current sensor arrays have several advantages such as good coherence,fast response speed,and high sensitivity,which can be used for micro-damage inspection of crucial parts in mechanical equipments and aerospace aviation.The main purpose of this research is to detect the defect in a metallic material surface and identify the length of a crack using planar eddy-current sensor arrays in different directions.The principle and characteristics of planar eddy-current sensor arrays are introduced,and a crack length quantification algorithm in different directions is investigated.A damage quantitative detection system is established based on a field programmable gate array and ARM processor.The system is utilized to inspect the micro defect in a metallic material,which is carved to micro crack with size of 7mm(length)×0.1mm(width)×1mm(depth).The experimental data show that the sensor arrays can be used for the length measurement repeatedly,and that the uncertainty of the length measurement is below ±0.2mm.
基金supported by the National Natural Science Foundation of China (Grant No. 50909072)the New Teachers' Fund for Doctor Station, the Ministry of Education of China (Grant No. 20090032120082)the Communication Research Item for the West Area, the Ministry of Communications of China (Grant No. 2009328000084)
文摘The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testing is an important method for research on dynamic identification and vibration mechanisms. Research on optimal sensor placement has become a very important topic due to the need to obtain effective testing information from limited test resources. To overcome inadequacies of the present methods, this paper puts forward the triaxial effective independence driving-point residue (EfI3-DPR3) method for optimal sensor placement. The Efl3-DPR3 method can incorporate both the maximum triaxial modal kinetic energy and linear independence of the triaxial target modes at the selected nodes. It was applied to the optimal placement oftriaxial sensors for vibration testing in a hydropower house, and satisfactory results were obtained. This method can provide some guidance for optimal placement of triaxial sensors of underground powerhouses.
基金This paper is supported by the National "863" Program in the Tenth Five-Year-Plan (No. 2002AA615020)Eleventh Five-Year-Plan (No. 2006AA09A201)the Focused Subject Program of Beijing (No. XK104910598).
文摘Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to complete measurements. To protect the magnetic field sensors from intense erosion and high pressure, suitable high-pressure sealed cabins must be designed to load them. For the consideration of magnetic measurement and marine operation, the sealed pressure cabin should be nonmagnetic and transportable. Among all optional materials, LC4 super.hard aluminum alloy has the highest performance of price/quality ratio to make the sealed pressure cabin. However, it does not mean that the high-pressure sealed cabin made using LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure cabin made using LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect does not affect the use of the magnetic field sensor, but if we want to eliminate its effect, we should study it by experimental measurements. In our experiment tests, frequency sweep magnetic field as excitation signal was used, and then responses of the magnetic field sensor before and after being loaded into the high-pressure sealed cabin were measured. Finally, normalized abnormal curves for the frequency responses were obtained, through which we could show how the high-pressure sealed cabin produces effects on the responses of the magnetic field sensor. Experimental results suggest that the response distortion induced by the sealed pressure cabin appears on mid- and high-frequency areas. Using experimental results as standardization data, the frequency responses collected from seafloor magnetotelluric measurements can be corrected to restore real information about the seafloor field source.