The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data...The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.展开更多
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
针对可见光通信信号在传输中易受信道环境和背景噪声干扰等因素影响调制格式识别精度的问题,提出一种用于可见光通信信号调制格式识别的改进YOLOv5s(You Only Look Once)算法。首先,通过YOLOv5s算法网络输入端引入Mixup数据增强方式,将...针对可见光通信信号在传输中易受信道环境和背景噪声干扰等因素影响调制格式识别精度的问题,提出一种用于可见光通信信号调制格式识别的改进YOLOv5s(You Only Look Once)算法。首先,通过YOLOv5s算法网络输入端引入Mixup数据增强方式,将其与原网络中的Mosaic数据增强方式相结合,提升网络的鲁棒性,并增强算法在不同调制格式信号间的泛化能力;其次,将自适应空间特征融合(ASFF)引入到Neck网络中,充分提取不同层次的特征,提高检测精度。实验结果表明,在混合信噪比条件下,所提改进算法的平均精度均值(mAP)达到了0.903,比原始YOLOv5s算法提升了0.7%,且在信噪比为20 dB时mAP高达0.993。展开更多
基金This project is supported by Provincial Youth Science Foundation of Shanxi China (No.20011020)National Natural Science Foundation of China (No.59975064).
文摘The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.
文摘The liquid crystal television spatial light modulator (LCTVSLM) characterized is usable in optical processing applications,e.g.,optical pattern recognition,associative memory, optical computing,correlation detection and optical data processing systems.The array performance and real-time optical correlation applications are reviewed.
文摘针对可见光通信信号在传输中易受信道环境和背景噪声干扰等因素影响调制格式识别精度的问题,提出一种用于可见光通信信号调制格式识别的改进YOLOv5s(You Only Look Once)算法。首先,通过YOLOv5s算法网络输入端引入Mixup数据增强方式,将其与原网络中的Mosaic数据增强方式相结合,提升网络的鲁棒性,并增强算法在不同调制格式信号间的泛化能力;其次,将自适应空间特征融合(ASFF)引入到Neck网络中,充分提取不同层次的特征,提高检测精度。实验结果表明,在混合信噪比条件下,所提改进算法的平均精度均值(mAP)达到了0.903,比原始YOLOv5s算法提升了0.7%,且在信噪比为20 dB时mAP高达0.993。