Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where t...Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where the nodes observe the mobility model of human society.It is a kind of Delay Tolerant Networks(DTNs)that gives a description to circulate information among the network nodes by the way of taking the benefit of transferring nodes from one area to another.Considering its inception,there are several schemes for message routing in the infrastructure-less environment in which human mobility is only the best manner to exchange information.For routing messages,PSN uses different techniques such asDistributed Expectation-Based Spatio-Temporal(DEBT)Epidemic(DEBTE),DEBT Cluster(DEBTC),and DEBT Tree(DEBTT).Understanding on how the network environment is affected for these routing strategies are the main motivation of this research.In this paper,we have investigated the impact of network nodes,the message copies per transmission,and the overall carrying out of these routing protocols.ONE simulator was used to analyze those techniques on the basis of delivery,overhead,and latency.The result of this task demonstrates that for a particular simulation setting,DEBTE is the best PSN routing technique among all,against DEBTC and DEBTT.展开更多
针对容迟移动传感器网络(Delay Tolerant Mobile Sensor Network,DTMSN)网络的容迟及节点的移动性特点,提出了一种新的基于概率预测的能量均衡组播路由算法(Energy-balanced Multicast Routing based Probability Probabilistic,EMRPP)...针对容迟移动传感器网络(Delay Tolerant Mobile Sensor Network,DTMSN)网络的容迟及节点的移动性特点,提出了一种新的基于概率预测的能量均衡组播路由算法(Energy-balanced Multicast Routing based Probability Probabilistic,EMRPP)。该算法采用到达概率选择路由下一跳的方式,且考虑了节点能量对算法性能的影响。仿真结果表明,EMRPP算法在数据传输率和平均传输延迟方面的性能要优于改进之前的PROPHET算法,是一种有效的容迟移动网络组播路由方案。展开更多
The use of mobile nodes to improve network system performance has drawn considerable attention recently The movement-assisted model considers mobility as a desirable feature, where routing is based on the store-carry-...The use of mobile nodes to improve network system performance has drawn considerable attention recently The movement-assisted model considers mobility as a desirable feature, where routing is based on the store-carry-forward paradigm with random or controlled movement of resource rich mobile nodes. The application of such a model has been used in several emerging networks, including mobile ad hoc networks (MANETs), wireless sensor networks (WSNs), and delay tolerant networks (DTNs). It is well known that mobility increases the capacity of MANETs by reducing the number of relays for routing, prolonging the lifespan of WSNs by using mobile nodes in place of bottleneck static sensors, and ensuring network connectivity in DTNs using mobile nodes to connect different parts of a disconnected network. Trajectory planning and the coordination of mobile nodes are two important design issues aiming to optimize or balance several measures, including delay, average number of relays, and moving distance. In this paper, we propose a new controlled mobility model with an expected polylogarithmic number of relays to achieve a good balance among several contradictory goals, including delay, the number of relays, and moving distance. The model is based on the small-world model where each static node has "short" link connections to its nearest neighbors and "long" link connections to other nodes following a certain probability distribution. Short links are regular wireless connections whereas long links are implemented using mobile nodes. Various issues are considered, including trade-offs between delay and average number of relays, selection of the number of mobile nodes, and selection of the number of long links. The effectiveness of the proposed model is evaluated analytically as well as through simulation.展开更多
基金UPNM Grant J0117-UPNM/2016/GPJP/5/ICT/2.The authors fully acknowledged Ministry of Higher Education(MOHE)and National Defence University of Malaysia for the approved fund which makes this important research viable and effective.The authors also would like to thank University Grant Commission of Bangladesh,Comilla University for the financial support.
文摘Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where the nodes observe the mobility model of human society.It is a kind of Delay Tolerant Networks(DTNs)that gives a description to circulate information among the network nodes by the way of taking the benefit of transferring nodes from one area to another.Considering its inception,there are several schemes for message routing in the infrastructure-less environment in which human mobility is only the best manner to exchange information.For routing messages,PSN uses different techniques such asDistributed Expectation-Based Spatio-Temporal(DEBT)Epidemic(DEBTE),DEBT Cluster(DEBTC),and DEBT Tree(DEBTT).Understanding on how the network environment is affected for these routing strategies are the main motivation of this research.In this paper,we have investigated the impact of network nodes,the message copies per transmission,and the overall carrying out of these routing protocols.ONE simulator was used to analyze those techniques on the basis of delivery,overhead,and latency.The result of this task demonstrates that for a particular simulation setting,DEBTE is the best PSN routing technique among all,against DEBTC and DEBTT.
文摘针对容迟移动传感器网络(Delay Tolerant Mobile Sensor Network,DTMSN)网络的容迟及节点的移动性特点,提出了一种新的基于概率预测的能量均衡组播路由算法(Energy-balanced Multicast Routing based Probability Probabilistic,EMRPP)。该算法采用到达概率选择路由下一跳的方式,且考虑了节点能量对算法性能的影响。仿真结果表明,EMRPP算法在数据传输率和平均传输延迟方面的性能要优于改进之前的PROPHET算法,是一种有效的容迟移动网络组播路由方案。
基金NSF of USA under Grant Nos.CCR 0329741,CNS 0422762,CNS 0434533,CNS 0531410,and CNS 0626240.
文摘The use of mobile nodes to improve network system performance has drawn considerable attention recently The movement-assisted model considers mobility as a desirable feature, where routing is based on the store-carry-forward paradigm with random or controlled movement of resource rich mobile nodes. The application of such a model has been used in several emerging networks, including mobile ad hoc networks (MANETs), wireless sensor networks (WSNs), and delay tolerant networks (DTNs). It is well known that mobility increases the capacity of MANETs by reducing the number of relays for routing, prolonging the lifespan of WSNs by using mobile nodes in place of bottleneck static sensors, and ensuring network connectivity in DTNs using mobile nodes to connect different parts of a disconnected network. Trajectory planning and the coordination of mobile nodes are two important design issues aiming to optimize or balance several measures, including delay, average number of relays, and moving distance. In this paper, we propose a new controlled mobility model with an expected polylogarithmic number of relays to achieve a good balance among several contradictory goals, including delay, the number of relays, and moving distance. The model is based on the small-world model where each static node has "short" link connections to its nearest neighbors and "long" link connections to other nodes following a certain probability distribution. Short links are regular wireless connections whereas long links are implemented using mobile nodes. Various issues are considered, including trade-offs between delay and average number of relays, selection of the number of mobile nodes, and selection of the number of long links. The effectiveness of the proposed model is evaluated analytically as well as through simulation.