Fixed-free single-walled carbon nanotubes (SWCNTs) have attracted a lot of interest in recent years due to their suitability for a wide range of applications, such as field emission and vacuum microelectronic devices,...Fixed-free single-walled carbon nanotubes (SWCNTs) have attracted a lot of interest in recent years due to their suitability for a wide range of applications, such as field emission and vacuum microelectronic devices, nanosensors, and nanoactuators. Based on a cantilever beam-bending model with a rigid mass at the free end and mode analysis, an analytical solution is developed in the present study to deal with the resonant frequency and mode shapes of a SWCNT- based mass sensor. The resonant frequency shift and mode shape of the fixed-free SWCNTs caused by the addition of a nanoscale particle to the beam tip are examined in order to explore the suitability of SWCNTs as a mass detector device. The simulation results reveal that the volume of the added particle has little effect on the first resonant frequency. In contrast, the second resonant frequency decreases with increasing the volume of the added particle. Furthermore, the resonant frequency shift of the first mode is very obvious for the amount of added mass, and the second resonant frequency decreases rapidly with increasing volume of added particle. Therefore, the first and second resonant frequencies can be used in the measurement of the mass of added particle and its volume, respectively.展开更多
A large variety of permutation routing protocols in a single-hop Network are known in the literature. Since they are single hop, there is always a wireless link connecting two nodes. One way to solve this problem in a...A large variety of permutation routing protocols in a single-hop Network are known in the literature. Since they are single hop, there is always a wireless link connecting two nodes. One way to solve this problem in a multiple hop environment is to partition nodes into clusters, where a node in each cluster called clusterhead is responsible for the routing service. In this paper, we propose a hybrid clustering mech?anism to perform permutation routing in multi-hop ad hoc Networks. We first propose to partition the network in single-hop clusters also named cliques. Secondly, we run a local permutation routing to broad?cast items to their local destinations in each clique. Next we partition the clusterheads of cliques with the hierarchical clustering technique. We show how the outgoing items can be routed to their destination cliques. We give an estimation of the number of broadcast rounds in the worse case. More precisely, we show that solving the permutation routing problem on a multi-hop sensor network need in the worse case. Where n is the number of the data items stored in the network, p is the number of sensors, |HUBmax| is the number of sensors in the clique of maximum size and k is the number of cliques after the first clustering. Finally, simulation results show that our algorithm performs better than the na?ve multiple gossiping. To the best of our knowledge, it is the first algorithm for permutation routing in multi-hop radio networks.展开更多
This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main...This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main components, the multipath routing scheme and the grid-based void avoidance (GVA) mechanism for handling routing holes. The multipath routing scheme adopts node-disjoint routes from the source to the sink in order to enhance network reliability and load balancing. While the GVA mechanism handles the problem of holes in 3D virtual grid structure based on three techniques: Hole bypass, path diversion, and path backtracking. The performance evaluation of the VA-GMPR protocol was compared to a recently proposed grid-based routing protocol for UWSNs, called Energy-efficient Multipath Geographic Grid-based Routing (EMGGR). The results showed that the VA-GMPR protocol outperformed the EMGGR protocol in terms of packet delivery ratio, and end-to end-delay. However, the results also showed that the VA-GMPR protocol exhibited higher energy consumption compared to EMGGR.展开更多
A Wireless Sensors Network (WSN) is an ad-hoc network populated by small hand-held commodity devices, running on batteries called stations or sensors. Often used in hostiles and sometimes unreachable environments, sta...A Wireless Sensors Network (WSN) is an ad-hoc network populated by small hand-held commodity devices, running on batteries called stations or sensors. Often used in hostiles and sometimes unreachable environments, stations are subject to energetic constraints which can significantly decrease the network life time. Permutation routing problem is mainly found in the literature of WSN. This problem occurs when some stations have items that belong either or not to them. The goal is to send each item to its receiver. To solve this problem, several works are presented in the literature. In this paper, we present a new permutation routing protocol for multi-hop wireless sensors network that, compared to recent work in the field is more efficient in terms of conservation of sensors’ energy, which results in a longer life time of the network. Also, contrary to some other routing protocols which assume that the memory of the sensors is infinite, we show that the memory size of the sensors is limited, which in our opinion is more realistic.展开更多
采用移动信宿(mobile sink,MS)的无线传感网络(wireless sensor networks,WSNs)比静态信宿具有更好的数据收集性能,但是规划MS移动路径是一项挑战工作。为此,该文提出基于遍历点优化的移动信宿路径规划算法(path of mobile sink plannin...采用移动信宿(mobile sink,MS)的无线传感网络(wireless sensor networks,WSNs)比静态信宿具有更好的数据收集性能,但是规划MS移动路径是一项挑战工作。为此,该文提出基于遍历点优化的移动信宿路径规划算法(path of mobile sink planning algorithm based on ergodic point,PSEP)。PSEP算法依据节点位置、通信重叠区和可获取的数据量,将覆盖区划分多个面区,再从这些面区中寻找MS遍历点;获取这些遍历点后,再利用行商问题(travelling salesman problem,TSP)算法规划MS的路径。仿真结果表明,提出的PSEP算法提高了吞吐量,降低了数据收集时延。展开更多
Wireless visual sensor network (VSN) can be said to be a special class of wireless sensor network (WSN) with smart-cameras. Due to its visual sensing capability, it has become an effective tool for applications such a...Wireless visual sensor network (VSN) can be said to be a special class of wireless sensor network (WSN) with smart-cameras. Due to its visual sensing capability, it has become an effective tool for applications such as large area surveillance, environmental monitoring and objects tracking. Different from a conventional WSN, VSN typically includes relatively expensive camera sensors, enhanced flash memory and a powerful CPU. While energy consumption is dominated primarily by data transmission and reception, VSN consumes extra power onimage sensing, processing and storing operations. The well-known energy-hole problem of WSNs has a drastic impact on the lifetime of VSN, because of the additional energy consumption of a VSN. Most prior research on VSN energy issues are primarily focusedon a single device or a given specific scenario. In this paper, we propose a novel optimal two-tier deployment strategy for a large scale VSN. Our two-tier VSN architecture includes tier-1 sensing network with visual sensor nodes (VNs) and tier-2 network having only relay nodes (RNs). While sensing network mainly performs image data collection, relay network only for wards image data packets to the central sink node. We use uniform random distribution of VNs to minimize the cost of VSN and RNs are deployed following two dimensional Gaussian distribution so as to avoid energy-hole problem. Algorithms are also introduced that optimizes deployment parameters and are shown to enhance the lifetime of the VSN in a cost effective manner.展开更多
文摘Fixed-free single-walled carbon nanotubes (SWCNTs) have attracted a lot of interest in recent years due to their suitability for a wide range of applications, such as field emission and vacuum microelectronic devices, nanosensors, and nanoactuators. Based on a cantilever beam-bending model with a rigid mass at the free end and mode analysis, an analytical solution is developed in the present study to deal with the resonant frequency and mode shapes of a SWCNT- based mass sensor. The resonant frequency shift and mode shape of the fixed-free SWCNTs caused by the addition of a nanoscale particle to the beam tip are examined in order to explore the suitability of SWCNTs as a mass detector device. The simulation results reveal that the volume of the added particle has little effect on the first resonant frequency. In contrast, the second resonant frequency decreases with increasing the volume of the added particle. Furthermore, the resonant frequency shift of the first mode is very obvious for the amount of added mass, and the second resonant frequency decreases rapidly with increasing volume of added particle. Therefore, the first and second resonant frequencies can be used in the measurement of the mass of added particle and its volume, respectively.
文摘A large variety of permutation routing protocols in a single-hop Network are known in the literature. Since they are single hop, there is always a wireless link connecting two nodes. One way to solve this problem in a multiple hop environment is to partition nodes into clusters, where a node in each cluster called clusterhead is responsible for the routing service. In this paper, we propose a hybrid clustering mech?anism to perform permutation routing in multi-hop ad hoc Networks. We first propose to partition the network in single-hop clusters also named cliques. Secondly, we run a local permutation routing to broad?cast items to their local destinations in each clique. Next we partition the clusterheads of cliques with the hierarchical clustering technique. We show how the outgoing items can be routed to their destination cliques. We give an estimation of the number of broadcast rounds in the worse case. More precisely, we show that solving the permutation routing problem on a multi-hop sensor network need in the worse case. Where n is the number of the data items stored in the network, p is the number of sensors, |HUBmax| is the number of sensors in the clique of maximum size and k is the number of cliques after the first clustering. Finally, simulation results show that our algorithm performs better than the na?ve multiple gossiping. To the best of our knowledge, it is the first algorithm for permutation routing in multi-hop radio networks.
文摘This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main components, the multipath routing scheme and the grid-based void avoidance (GVA) mechanism for handling routing holes. The multipath routing scheme adopts node-disjoint routes from the source to the sink in order to enhance network reliability and load balancing. While the GVA mechanism handles the problem of holes in 3D virtual grid structure based on three techniques: Hole bypass, path diversion, and path backtracking. The performance evaluation of the VA-GMPR protocol was compared to a recently proposed grid-based routing protocol for UWSNs, called Energy-efficient Multipath Geographic Grid-based Routing (EMGGR). The results showed that the VA-GMPR protocol outperformed the EMGGR protocol in terms of packet delivery ratio, and end-to end-delay. However, the results also showed that the VA-GMPR protocol exhibited higher energy consumption compared to EMGGR.
文摘A Wireless Sensors Network (WSN) is an ad-hoc network populated by small hand-held commodity devices, running on batteries called stations or sensors. Often used in hostiles and sometimes unreachable environments, stations are subject to energetic constraints which can significantly decrease the network life time. Permutation routing problem is mainly found in the literature of WSN. This problem occurs when some stations have items that belong either or not to them. The goal is to send each item to its receiver. To solve this problem, several works are presented in the literature. In this paper, we present a new permutation routing protocol for multi-hop wireless sensors network that, compared to recent work in the field is more efficient in terms of conservation of sensors’ energy, which results in a longer life time of the network. Also, contrary to some other routing protocols which assume that the memory of the sensors is infinite, we show that the memory size of the sensors is limited, which in our opinion is more realistic.
文摘采用移动信宿(mobile sink,MS)的无线传感网络(wireless sensor networks,WSNs)比静态信宿具有更好的数据收集性能,但是规划MS移动路径是一项挑战工作。为此,该文提出基于遍历点优化的移动信宿路径规划算法(path of mobile sink planning algorithm based on ergodic point,PSEP)。PSEP算法依据节点位置、通信重叠区和可获取的数据量,将覆盖区划分多个面区,再从这些面区中寻找MS遍历点;获取这些遍历点后,再利用行商问题(travelling salesman problem,TSP)算法规划MS的路径。仿真结果表明,提出的PSEP算法提高了吞吐量,降低了数据收集时延。
文摘Wireless visual sensor network (VSN) can be said to be a special class of wireless sensor network (WSN) with smart-cameras. Due to its visual sensing capability, it has become an effective tool for applications such as large area surveillance, environmental monitoring and objects tracking. Different from a conventional WSN, VSN typically includes relatively expensive camera sensors, enhanced flash memory and a powerful CPU. While energy consumption is dominated primarily by data transmission and reception, VSN consumes extra power onimage sensing, processing and storing operations. The well-known energy-hole problem of WSNs has a drastic impact on the lifetime of VSN, because of the additional energy consumption of a VSN. Most prior research on VSN energy issues are primarily focusedon a single device or a given specific scenario. In this paper, we propose a novel optimal two-tier deployment strategy for a large scale VSN. Our two-tier VSN architecture includes tier-1 sensing network with visual sensor nodes (VNs) and tier-2 network having only relay nodes (RNs). While sensing network mainly performs image data collection, relay network only for wards image data packets to the central sink node. We use uniform random distribution of VNs to minimize the cost of VSN and RNs are deployed following two dimensional Gaussian distribution so as to avoid energy-hole problem. Algorithms are also introduced that optimizes deployment parameters and are shown to enhance the lifetime of the VSN in a cost effective manner.