Progress in understanding multisensory integration in human have suggested researchers that the integration may result into the enhancement or depression of incoming signals.It is evident based on different psychologi...Progress in understanding multisensory integration in human have suggested researchers that the integration may result into the enhancement or depression of incoming signals.It is evident based on different psychological and behavioral experiments that stimuli coming from different perceptual modalities at the same time or from the same place,the signal having more strength under the influence of emotions effects the response accordingly.Current research inmultisensory integration has not studied the effect of emotions despite its significance and natural influence in multisensory enhancement or depression.Therefore,there is a need to integrate the emotional state of the agent with incoming stimuli for signal enhancement or depression.In this study,two different neural network-based learning algorithms have been employed to learn the impact of emotions on signal enhancement or depression.It was observed that the performance of a proposed system for multisensory integration increases when emotion features were present during enhancement or depression of multisensory signals.展开更多
基金This work was supported by the GRRC program of Gyeonggi province.[GRRC-Gachon2020(B04),Development of AI-based Healthcare Devices].
文摘Progress in understanding multisensory integration in human have suggested researchers that the integration may result into the enhancement or depression of incoming signals.It is evident based on different psychological and behavioral experiments that stimuli coming from different perceptual modalities at the same time or from the same place,the signal having more strength under the influence of emotions effects the response accordingly.Current research inmultisensory integration has not studied the effect of emotions despite its significance and natural influence in multisensory enhancement or depression.Therefore,there is a need to integrate the emotional state of the agent with incoming stimuli for signal enhancement or depression.In this study,two different neural network-based learning algorithms have been employed to learn the impact of emotions on signal enhancement or depression.It was observed that the performance of a proposed system for multisensory integration increases when emotion features were present during enhancement or depression of multisensory signals.