Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection...Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection of products, in marketing study and in many other fields such as risk evaluation, investment evaluation and safety evaluation. In practice, setting up a suitable mathematical formulation, an efficient working procedure and a pertinent computing method for sensory evaluation is quite difficult because of uncertainty and imprecision in sensory panels and their results involving linguistic expressions, non normalized data, data reliability, etc. At the present a prime problem of the practitioner is not the lack of useful methods but the lack of transparency in this area. In this tutorial lecture, we briefly describe some of the technology in the computational intelligence (CI) areas that has been developed for application to sensory evaluation and related fields. Moreover, we will illustrate the role of CI in sensory evaluation related applications from some recent publications.展开更多
Sensorial information is very difficult to elicit, to represent and to manage because of its complexity. Fuzzy logic provides an interesting means to deal with such information, since it allows us to represent impreci...Sensorial information is very difficult to elicit, to represent and to manage because of its complexity. Fuzzy logic provides an interesting means to deal with such information, since it allows us to represent imprecise, vague or incomplete descriptions, which are very common in the management of subjective information. Aggregation methods proposed by fuzzy logic are further useful to combine the characteristics of the various components of sensorial information.展开更多
In this paper, a multi-sensory quality evaluation using an array of instruments to measure different sensory qualities is established via communication network. The network is used to transmit quality data to evaluati...In this paper, a multi-sensory quality evaluation using an array of instruments to measure different sensory qualities is established via communication network. The network is used to transmit quality data to evaluation computer. And the network-induced delays between instruments and computer may have negative influence on final evaluation results. The main goal of this paper is to analyze network delays’ influence on evaluation results, and present a fuzzy-logic based solution to eliminate the impact and improve the precision of evaluation. And simulations are conducted to show the effectiveness of the proposed approach.展开更多
Sensory data are, due to the lack of an absolute reference, imprecise and uncertain data. Fuzzy logic can handle uncertainty and can be used in approximate reasoning. Automatic learning procedures allow to generate fu...Sensory data are, due to the lack of an absolute reference, imprecise and uncertain data. Fuzzy logic can handle uncertainty and can be used in approximate reasoning. Automatic learning procedures allow to generate fuzzy reasoning rules from data including numerical and symbolic or sensory variables. We briefly present an induction method that was developed to extract qualitative knowledge from data samples. The induction process is run under interpretability constraints to ensure the fuzzy rules have a meaning for the human expert. We then study two applied problems in the food industry: sensory evaluation and process modeling.展开更多
文摘Sensory evaluation is the evaluation of signals that a human receives via its senses of sight, smell, taste, touch and hearing. In today’s industrial companies, sensory evaluation is widely used in quality inspection of products, in marketing study and in many other fields such as risk evaluation, investment evaluation and safety evaluation. In practice, setting up a suitable mathematical formulation, an efficient working procedure and a pertinent computing method for sensory evaluation is quite difficult because of uncertainty and imprecision in sensory panels and their results involving linguistic expressions, non normalized data, data reliability, etc. At the present a prime problem of the practitioner is not the lack of useful methods but the lack of transparency in this area. In this tutorial lecture, we briefly describe some of the technology in the computational intelligence (CI) areas that has been developed for application to sensory evaluation and related fields. Moreover, we will illustrate the role of CI in sensory evaluation related applications from some recent publications.
文摘Sensorial information is very difficult to elicit, to represent and to manage because of its complexity. Fuzzy logic provides an interesting means to deal with such information, since it allows us to represent imprecise, vague or incomplete descriptions, which are very common in the management of subjective information. Aggregation methods proposed by fuzzy logic are further useful to combine the characteristics of the various components of sensorial information.
基金partially supported by National Natural Science Foundation of China,Project No.60274031International Cooperation Project of Science&Technology Commission of Shanghai Municipality,Project No.015107017Building Fund for Doctoral Disciplines of Shanghai Mouicipality
文摘In this paper, a multi-sensory quality evaluation using an array of instruments to measure different sensory qualities is established via communication network. The network is used to transmit quality data to evaluation computer. And the network-induced delays between instruments and computer may have negative influence on final evaluation results. The main goal of this paper is to analyze network delays’ influence on evaluation results, and present a fuzzy-logic based solution to eliminate the impact and improve the precision of evaluation. And simulations are conducted to show the effectiveness of the proposed approach.
文摘Sensory data are, due to the lack of an absolute reference, imprecise and uncertain data. Fuzzy logic can handle uncertainty and can be used in approximate reasoning. Automatic learning procedures allow to generate fuzzy reasoning rules from data including numerical and symbolic or sensory variables. We briefly present an induction method that was developed to extract qualitative knowledge from data samples. The induction process is run under interpretability constraints to ensure the fuzzy rules have a meaning for the human expert. We then study two applied problems in the food industry: sensory evaluation and process modeling.