The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave...The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave data are widely used to monitor lake ice changes with high temporal resolution.However,the low spatial resolutions make it difficult to effectively quantify the freeze-melt dynamics of lakes.This work used Sentinel-1 synthetic aperture radar(SAR)data to derive high-resolution ice maps(about 6 days),then with the aid of Sentinel-2 optical images to quantify freeze-melt processes in three typical lakes on the TP(e.g.Selin Co,Ayakekumu Lake,and Nam Co).The results showed that three lakes had an average annual ice period of 125-157 days and a complete ice cover period of 72-115 days,from 2018 to 2022.They exhibit different ice phenology patterns.Nam Co is characterized by repeated episodes of freezing,melting,and refreezing,resulting in a prolonged freeze-up period.Meanwhile,the break-up period of Nam Co lasts for a longer duration(about 19 days),and the break-up exhibits a smooth process.Similarly,Ayakekumu Lake showed more significant inter-annual fluctuations in the freeze-up period,with deviations of up to 28 days observed among different years.Compared to the other two lakes,Selin Co experienced a relatively short freeze-up and break-up period.In short,Sentinel-1 SAR data can effectively monitor the weekly and seasonal variations in lake ice on the TP.Particularly,this data facilitates quantification of the freeze-melt dynamics.展开更多
This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was f...This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively.展开更多
叶面积指数(leaf area index,LAI)是单位地表面积上总叶面积的一半,是影响光合作用、蒸腾作用和能量平衡等地表过程的关键生物物理变量。鉴于光学遥感数据易受天气的影响,雷达遥感数据易受土壤等的影响,二者在叶面积指数反演方面各有利...叶面积指数(leaf area index,LAI)是单位地表面积上总叶面积的一半,是影响光合作用、蒸腾作用和能量平衡等地表过程的关键生物物理变量。鉴于光学遥感数据易受天气的影响,雷达遥感数据易受土壤等的影响,二者在叶面积指数反演方面各有利弊,提出了一种考虑不同数据反演结果不确定性的融合方法。研究测试了多种机器学习模型在中国张掖地区的玉米农田上估算LAI的性能。结果表明,光学和雷达两种数据分别作为模型输入进行LAI反演时,高斯过程回归(Gaussian process regression,GPR)的表现均为最优。随后,基于Sentinel-1雷达数据和Sentinel-2光学数据,使用GPR模型生成了研究区2019年的两种LAI及不确定性时空分布图。考虑不同数据反演结果的差异,使用加权滤波方法将两种LAI融合,实现了高时空分辨率玉米LAI制图。通过定性和定量分析,融合后的LAI时间序列分布图变化连贯,空间分布均匀,精度相较于融合之前有了明显改善。展开更多
Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to pred...Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to predict SOM with high accuracy using multiyear synthetic remote sensing variables on a monthly scale.We obtained 12 monthly synthetic Sentinel-2 images covering the study area from 2016 to 2021 through the Google Earth Engine(GEE)platform,and reflectance bands and vegetation indices were extracted from these composite images.Then the random forest(RF),support vector machine(SVM)and gradient boosting regression tree(GBRT)models were tested to investigate the difference in SOM prediction accuracy under different combinations of monthly synthetic variables.Results showed that firstly,all monthly synthetic spectral bands of Sentinel-2 showed a significant correlation with SOM(P<0.05)for the months of January,March,April,October,and November.Secondly,in terms of single-monthly composite variables,the prediction accuracy was relatively poor,with the highest R^(2)value of 0.36 being observed in January.When monthly synthetic environmental variables were grouped in accordance with the four quarters of the year,the first quarter and the fourth quarter showed good performance,and any combination of three quarters was similar in estimation accuracy.The overall best performance was observed when all monthly synthetic variables were incorporated into the models.Thirdly,among the three models compared,the RF model was consistently more accurate than the SVM and GBRT models,achieving an R^(2)value of 0.56.Except for band 12 in December,the importance of the remaining bands did not exhibit significant differences.This research offers a new attempt to map SOM with high accuracy and fine spatial resolution based on monthly synthetic Sentinel-2 images.展开更多
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ...In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.展开更多
Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT w...Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems.展开更多
We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Se...We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season.展开更多
基金supported financially by the National Nature Science Foundation of China(No.41901129)the University Natural Sciences Research Project of Anhui Educational committee(KJ2020JD06)DUAN Zheng acknowledges the support from the Joint China-Sweden Mobility Grant funded by NSFC and STINT(CH2019-8250).
文摘The ice phenology of alpine lakes on the Tibetan Plateau(TP)is a rapid and direct responder to climate changes,and the variations in lake ice exhibit high temporal frequency characteristics.MODIS and passive microwave data are widely used to monitor lake ice changes with high temporal resolution.However,the low spatial resolutions make it difficult to effectively quantify the freeze-melt dynamics of lakes.This work used Sentinel-1 synthetic aperture radar(SAR)data to derive high-resolution ice maps(about 6 days),then with the aid of Sentinel-2 optical images to quantify freeze-melt processes in three typical lakes on the TP(e.g.Selin Co,Ayakekumu Lake,and Nam Co).The results showed that three lakes had an average annual ice period of 125-157 days and a complete ice cover period of 72-115 days,from 2018 to 2022.They exhibit different ice phenology patterns.Nam Co is characterized by repeated episodes of freezing,melting,and refreezing,resulting in a prolonged freeze-up period.Meanwhile,the break-up period of Nam Co lasts for a longer duration(about 19 days),and the break-up exhibits a smooth process.Similarly,Ayakekumu Lake showed more significant inter-annual fluctuations in the freeze-up period,with deviations of up to 28 days observed among different years.Compared to the other two lakes,Selin Co experienced a relatively short freeze-up and break-up period.In short,Sentinel-1 SAR data can effectively monitor the weekly and seasonal variations in lake ice on the TP.Particularly,this data facilitates quantification of the freeze-melt dynamics.
文摘This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively.
文摘叶面积指数(leaf area index,LAI)是单位地表面积上总叶面积的一半,是影响光合作用、蒸腾作用和能量平衡等地表过程的关键生物物理变量。鉴于光学遥感数据易受天气的影响,雷达遥感数据易受土壤等的影响,二者在叶面积指数反演方面各有利弊,提出了一种考虑不同数据反演结果不确定性的融合方法。研究测试了多种机器学习模型在中国张掖地区的玉米农田上估算LAI的性能。结果表明,光学和雷达两种数据分别作为模型输入进行LAI反演时,高斯过程回归(Gaussian process regression,GPR)的表现均为最优。随后,基于Sentinel-1雷达数据和Sentinel-2光学数据,使用GPR模型生成了研究区2019年的两种LAI及不确定性时空分布图。考虑不同数据反演结果的差异,使用加权滤波方法将两种LAI融合,实现了高时空分辨率玉米LAI制图。通过定性和定量分析,融合后的LAI时间序列分布图变化连贯,空间分布均匀,精度相较于融合之前有了明显改善。
基金National Key Research and Development Program of China(2022YFB3903302 and 2021YFC1809104)。
文摘Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to predict SOM with high accuracy using multiyear synthetic remote sensing variables on a monthly scale.We obtained 12 monthly synthetic Sentinel-2 images covering the study area from 2016 to 2021 through the Google Earth Engine(GEE)platform,and reflectance bands and vegetation indices were extracted from these composite images.Then the random forest(RF),support vector machine(SVM)and gradient boosting regression tree(GBRT)models were tested to investigate the difference in SOM prediction accuracy under different combinations of monthly synthetic variables.Results showed that firstly,all monthly synthetic spectral bands of Sentinel-2 showed a significant correlation with SOM(P<0.05)for the months of January,March,April,October,and November.Secondly,in terms of single-monthly composite variables,the prediction accuracy was relatively poor,with the highest R^(2)value of 0.36 being observed in January.When monthly synthetic environmental variables were grouped in accordance with the four quarters of the year,the first quarter and the fourth quarter showed good performance,and any combination of three quarters was similar in estimation accuracy.The overall best performance was observed when all monthly synthetic variables were incorporated into the models.Thirdly,among the three models compared,the RF model was consistently more accurate than the SVM and GBRT models,achieving an R^(2)value of 0.56.Except for band 12 in December,the importance of the remaining bands did not exhibit significant differences.This research offers a new attempt to map SOM with high accuracy and fine spatial resolution based on monthly synthetic Sentinel-2 images.
基金Project supported by the Key Area Research and Development Program of Guangdong Province,China(Grant No.2022B0701180001)the National Natural Science Foundation of China(Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China(Grant Nos.2019B010140002 and 2020B111110002)the Guangdong–Hong Kong–Macao Joint Innovation Field Project(Grant No.2021A0505080006).
文摘In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.
基金funded by the National Natural Science Foundation of China(42071300)the Fujian Province Natural Science(2020J01504)+4 种基金the China Postdoctoral Science Foundation(2018M630728)the Open Fund of Fujian Provincial Key Laboratory of Resources and Environment Monitoring&Sustainable Management and Utilization(ZD202102)the Program for Innovative Research Team in Science and Technology in Fujian Province University(KC190002)the Open Fund of University Key Lab of Geomatics Technology and Optimize Resources Utilization in Fujian Province(fafugeo201901)supported by the Research Project of Jinjiang Fuda Science and Education Park Development Center(2019-JJFDKY-17)。
文摘Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems.
文摘We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season.