The purpose is to study the accuracy of ocean wave parameters retrieved from C-band VV-polarization Sentinel-1Synthetic Aperture Radar(SAR) images, including both significant wave height(SWH) and mean wave period...The purpose is to study the accuracy of ocean wave parameters retrieved from C-band VV-polarization Sentinel-1Synthetic Aperture Radar(SAR) images, including both significant wave height(SWH) and mean wave period(MWP), which are both calculated from a SAR-derived wave spectrum. The wind direction from in situ buoys is used and then the wind speed is retrieved by using a new C-band geophysical model function(GMF) model,denoted as C-SARMOD. Continuously, an algorithm parameterized first-guess spectra method(PFSM) is employed to retrieve the SWH and the MWP by using the SAR-derived wind speed. Forty-five VV-polarization Sentinel-1 SAR images are collected, which cover the in situ buoys around US coastal waters. A total of 52 subscenes are selected from those images. The retrieval results are compared with the measurements from in situ buoys. The comparison performs good for a wind retrieval, showing a 1.6 m/s standard deviation(STD) of the wind speed, while a 0.54 m STD of the SWH and a 2.14 s STD of the MWP are exhibited with an acceptable error.Additional 50 images taken in China's seas were also implemented by using the algorithm PFSM, showing a 0.67 m STD of the SWH and a 2.21 s STD of the MWP compared with European Centre for Medium-range Weather Forecasts(ECMWF) reanalysis grids wave data. The results indicate that the algorithm PFSM works for the wave retrieval from VV-polarization Sentinel-1 SAR image through SAR-derived wind speed by using the new GMF C-SARMOD.展开更多
Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of Ch...Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of China and the Huaibei Plain in Anhui Province of China were selected as the study areas.Thresholds of backscattering coefficients in the decision tree method were calculated with the histogram analysis method,and flood disaster monitoring in the two study areas was conducted with the threshold method using Sentinel-1 satellite images.Through satellite-based flood disaster monitoring,the flooded maps and the areas of expanded water bodies and flooded crops were derived.The satellite-based monitoring maps were derived by comparing the expanded area of images during a flood disaster with that before the disaster.The difference in spatiotemporal distribution of flood disasters in these two regions was analyzed.The results showed that flood disasters in the Sihu Basin occurred frequently in June and July,and flood disasters in the Huaibei Plain mostly occurred in August,with a high interannual vari-ability.Flood disasters in the Sihu Basin were usually widespread,and the affected area was between Changhu and Honghu lakes.The Huaibei Plain was affected by scattered disasters.The annual mean percentages of flooded crop area were 14.91%and 3.74% in the Sihu Basin and Huaibei Plain,respectively.The accuracies of the extracted flooded area in the Sihu Basin in 2016 and 2017 were 96.20% and 95.19%,respectively.展开更多
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu...Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.展开更多
Accurately locating and studying grounding lines is essential for predicting the response of glaciers to climate change.However,it is challenging tofind grounding lines since they are subglacial features.In this study...Accurately locating and studying grounding lines is essential for predicting the response of glaciers to climate change.However,it is challenging tofind grounding lines since they are subglacial features.In this study,Sentinel-1 synthetic aperture radar(SAR)data were utilized to derive the grounding lines of the Riiser-Larsen Ice Shelf.A new method with inspiration drawn from multi-temporal baseline InSAR techniques is proposed.It takes advantage of the temporal consistency of the vertical displacement gradients and identifies grounding zones pixel-by-pixel on a stack of double differential interferograms,thereby providing grounding line proxies.As it fully exploits coherent signals in both spatial and temporal domains,the maximum possible number of grounding zone pixels can be obtained.Moreover,due to the introduction of the concept of the temporal consistency,the method can cope with short term grounding linefluctuations to some extent and may mitigate the influences of atmospheric disturbances and residual ice displacements.The resulting grounding lines are compared with the MEaSUREs Antarctic grounding line product.The comparison confirms the effectiveness of the proposed method and corroborates that the Riiser-Larsen Ice Shelf should have not undergone significant changes over the past few decades.展开更多
基金The Public Welfare Technical Applied Research Project of Zhejiang Province of China under contract No.2015C31021the National Key Research and Development Program of China under contract No.2016YFC1401605the Scientific Foundation of Zhejiang Ocean University of China
文摘The purpose is to study the accuracy of ocean wave parameters retrieved from C-band VV-polarization Sentinel-1Synthetic Aperture Radar(SAR) images, including both significant wave height(SWH) and mean wave period(MWP), which are both calculated from a SAR-derived wave spectrum. The wind direction from in situ buoys is used and then the wind speed is retrieved by using a new C-band geophysical model function(GMF) model,denoted as C-SARMOD. Continuously, an algorithm parameterized first-guess spectra method(PFSM) is employed to retrieve the SWH and the MWP by using the SAR-derived wind speed. Forty-five VV-polarization Sentinel-1 SAR images are collected, which cover the in situ buoys around US coastal waters. A total of 52 subscenes are selected from those images. The retrieval results are compared with the measurements from in situ buoys. The comparison performs good for a wind retrieval, showing a 1.6 m/s standard deviation(STD) of the wind speed, while a 0.54 m STD of the SWH and a 2.14 s STD of the MWP are exhibited with an acceptable error.Additional 50 images taken in China's seas were also implemented by using the algorithm PFSM, showing a 0.67 m STD of the SWH and a 2.21 s STD of the MWP compared with European Centre for Medium-range Weather Forecasts(ECMWF) reanalysis grids wave data. The results indicate that the algorithm PFSM works for the wave retrieval from VV-polarization Sentinel-1 SAR image through SAR-derived wind speed by using the new GMF C-SARMOD.
基金This work was supported by the National Key Research and Development Program of China(Grants No.2018YFC1508302 and 2018YFC1508301)the Natural Science Foundation of Hubei Province of China(Grant No.2019CFB507).
文摘Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of China and the Huaibei Plain in Anhui Province of China were selected as the study areas.Thresholds of backscattering coefficients in the decision tree method were calculated with the histogram analysis method,and flood disaster monitoring in the two study areas was conducted with the threshold method using Sentinel-1 satellite images.Through satellite-based flood disaster monitoring,the flooded maps and the areas of expanded water bodies and flooded crops were derived.The satellite-based monitoring maps were derived by comparing the expanded area of images during a flood disaster with that before the disaster.The difference in spatiotemporal distribution of flood disasters in these two regions was analyzed.The results showed that flood disasters in the Sihu Basin occurred frequently in June and July,and flood disasters in the Huaibei Plain mostly occurred in August,with a high interannual vari-ability.Flood disasters in the Sihu Basin were usually widespread,and the affected area was between Changhu and Honghu lakes.The Huaibei Plain was affected by scattered disasters.The annual mean percentages of flooded crop area were 14.91%and 3.74% in the Sihu Basin and Huaibei Plain,respectively.The accuracies of the extracted flooded area in the Sihu Basin in 2016 and 2017 were 96.20% and 95.19%,respectively.
基金Under the auspices of National Natural Science Foundation of China(No.42071385)National Science and Technology Major Project of High Resolution Earth Observation System(No.79-Y50-G18-9001-22/23)。
文摘Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentifying noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an average Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estimation error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.
基金funded by the National Natural Science Foundation of China(Grant No.42074034).
文摘Accurately locating and studying grounding lines is essential for predicting the response of glaciers to climate change.However,it is challenging tofind grounding lines since they are subglacial features.In this study,Sentinel-1 synthetic aperture radar(SAR)data were utilized to derive the grounding lines of the Riiser-Larsen Ice Shelf.A new method with inspiration drawn from multi-temporal baseline InSAR techniques is proposed.It takes advantage of the temporal consistency of the vertical displacement gradients and identifies grounding zones pixel-by-pixel on a stack of double differential interferograms,thereby providing grounding line proxies.As it fully exploits coherent signals in both spatial and temporal domains,the maximum possible number of grounding zone pixels can be obtained.Moreover,due to the introduction of the concept of the temporal consistency,the method can cope with short term grounding linefluctuations to some extent and may mitigate the influences of atmospheric disturbances and residual ice displacements.The resulting grounding lines are compared with the MEaSUREs Antarctic grounding line product.The comparison confirms the effectiveness of the proposed method and corroborates that the Riiser-Larsen Ice Shelf should have not undergone significant changes over the past few decades.