期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例 被引量:5
1
作者 张昊 高小红 +1 位作者 史飞飞 李润祥 《自然资源遥感》 CSCD 北大核心 2022年第4期144-154,共11页
青海东部农业区地处黄土高原向青藏高原的过渡地带,黄土丘陵地貌类型多样、地形起伏大、破碎。随着近几十年来城市化进程的加快,农村可用劳动力缺失导致土地撂荒现象日益严重,因此掌握东部农业区撂荒地分布状况,对保护耕地与生态用地至... 青海东部农业区地处黄土高原向青藏高原的过渡地带,黄土丘陵地貌类型多样、地形起伏大、破碎。随着近几十年来城市化进程的加快,农村可用劳动力缺失导致土地撂荒现象日益严重,因此掌握东部农业区撂荒地分布状况,对保护耕地与生态用地至关重要。本研究基于GEE云平台,以青海民和县为案例,依据农作物的物候特征,选取种植期和成熟期2季的Sentinel-2 MSI与Sentinel-1 SAR卫星影像为主要数据源,以DEM为辅助,结合光谱、地形、极化与缨帽特征,采用随机森林方法对研究区2018—2020年土地覆被进行自动分类,获取了研究区3 a的土地覆被数据,在此基础上借助撂荒地判断规则建立决策树提取撂荒地并进行验证。研究结果表明:2018年、2019年及2020年土地覆被总体分类精度分别为86.93%,87.36%和88.54%;2020年民和县撂荒地面积为43.17 km 2,占总面积的2.28%;撂荒地主要分布在海拔为2200~2600 m范围、坡度为6°~25°范围、坡向为阴坡的区域。Sentinel-1 SAR影像极化特征结合到Sentinel-2 MSI多季相数据中,能够有效提高黄土丘陵地形区土地覆被分类精度,获得较为准确的撂荒地信息。该研究为类似地形区域进行撂荒地提取提供了方法参考和借鉴。 展开更多
关键词 撂荒地 sentinel-1/2 多季相 随机森林 黄土高原西部 民和县
下载PDF
Comparing leaf area index estimates in a Mediterranean forest using field measurements, Landsat 8, and Sentinel-2 data
2
作者 Alessandro Sebastiani Riccardo Salvati Fausto Manes 《Ecological Processes》 SCIE EI 2023年第1期402-414,共13页
Background Leaf area index(LAI)is a key indicator for the assessment of the canopy’s processes such as net primary production and evapotranspiration.For this reason,the LAI is often used as a key input parameter in e... Background Leaf area index(LAI)is a key indicator for the assessment of the canopy’s processes such as net primary production and evapotranspiration.For this reason,the LAI is often used as a key input parameter in ecosystem services’modeling,which is emerging as a critical tool for steering upcoming urban reforestation strategies.However,LAI field measures are extremely time-consuming and require remarkable economic and human resources.In this context,spectral indices computed using high-resolution multispectral satellite imagery like Sentinel-2 and Landsat 8,may represent a feasible and economic solution for estimating the LAI at the city scale.Nonetheless,as far as we know,only a few studies have assessed the potential of Sentinel-2 and Landsat 8 data doing so in Mediterranean forest ecosystems.To fill such a gap,we assessed the performance of 10 spectral indices derived from Sentinel-2 and Landsat 8 data in estimating the LAI,using field measurements collected with the LI-COR LAI 2200c as a reference.We hypothesized that Sentinel-2 data,owing to their finer spatial and spectral resolution,perform better in estimating vegetation’s structural parameters compared to Landsat 8.Results We found that Landsat 8-derived models have,on average,a slightly better performance,with the best model(the one based on NDVI)showing an R^(2) of 0.55 and NRMSE of 14.74%,compared to R^(2) of 0.52 and NRMSE of 15.15%showed by the best Sentinel-2 model,which is based on the NBR.All models were affected by spectrum saturation for high LAI values(e.g.,above 5).Conclusion In Mediterranean ecosystems,Sentinel-2 and Landsat 8 data produce moderately accurate LAI estimates during the peak of the growing season.Therefore,the uncertainty introduced using satellite-derived LAI in ecosystem services’assessments should be systematically accounted for. 展开更多
关键词 Mediterranean forest Leaf area index Field measurement Multispectral satellite imagery sentinel-2 Landsat 8 Spectral vegetation index Global change
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部