归一化植被指数(normalized difference vegetation index,NDVI)时间序列已广泛应用于植被信息提取研究,然而目前NDVI时间序列的研究主要集中于中低分辨率遥感影像,从而影响了植被信息提取的精度。随着中国高分专项首颗卫星高分一号(GF...归一化植被指数(normalized difference vegetation index,NDVI)时间序列已广泛应用于植被信息提取研究,然而目前NDVI时间序列的研究主要集中于中低分辨率遥感影像,从而影响了植被信息提取的精度。随着中国高分专项首颗卫星高分一号(GF-1)的发射,为高分辨率NDVI时间序列的构建提供了可能。该文尝试利用GF-1卫星16 m宽覆盖(wide field of view,WFV)影像,构建16 m分辨率NDVI时间序列,以河北省唐山市南部区域为研究区,开展作物分类研究。该文采用覆盖作物完整生长期的GF-1数据构建NDVI时间序列,避免了利用自然年(1-12月)数据构建NDVI时间序列的不足,有助于作物信息的提取。通过分析样地的NDVI时序曲线,发现GF-1/WFV NDVI时间序列能够清晰地区分不同作物的物候差异,捕捉作物特有的生长特性,而且能够识别研究区当年的作物种植模式。该文分别采用最大似然法、马氏距离、最小距离、神经网络分类、支持向量机(support vector machine,SVM)等分类方法,基于GF-1/WFV NDVI时间序列对研究区作物进行分类,研究结果表明SVM分类方法总体精度最高,达到96.33%。同时该文还采用时间序列谐波分析法(harmonic analysis of time series,HANTS)对NDVI时间序列进行了平滑处理,结果表明处理后的NDVI时间序列能更好地描述作物的物候特性,作物分类精度得到进一步提高。展开更多
由于热带地区的雨季时间较长,云覆盖严重,基于光学影像难以准确提取区域内的水稻种植模式。该文以泰国湄南河流域中部平原水稻种植区为例,基于Sentinel-1SAR时间序列数据,提出一种融合时序统计参数与时序曲线相似性特征的热带地区水稻...由于热带地区的雨季时间较长,云覆盖严重,基于光学影像难以准确提取区域内的水稻种植模式。该文以泰国湄南河流域中部平原水稻种植区为例,基于Sentinel-1SAR时间序列数据,提出一种融合时序统计参数与时序曲线相似性特征的热带地区水稻种植结构提取方法。首先利用年内所有可获取的Sentinel-1SAR数据,分别基于像元和基于对象构建后向散射系数时间序列曲线,提取时序特征参数;利用动态时间规整(Dynamic Time Warping,DTW)算法,计算后向散射系数时序曲线与地物标准曲线间的隶属度;将时序特征参数、时序曲线隶属度相结合,利用随机森林模型进行机器学习监督分类,提取研究区的水稻种植信息并评价分类精度。结果表明,基于Sentinel-1SAR时序特征融合的算法可以较好地提高水稻种植结构分类精度。其中,基于对象的分类算法的单季稻提取用户精度为81.46%,生产者精度为82.00%;双季稻用户精度为88.0%,生产者精度为84.08%,均优于基于像元的分类算法。研究结果可为多云多雨的热带地区水稻种植信息提取提供一种新的思路。展开更多
文摘归一化植被指数(normalized difference vegetation index,NDVI)时间序列已广泛应用于植被信息提取研究,然而目前NDVI时间序列的研究主要集中于中低分辨率遥感影像,从而影响了植被信息提取的精度。随着中国高分专项首颗卫星高分一号(GF-1)的发射,为高分辨率NDVI时间序列的构建提供了可能。该文尝试利用GF-1卫星16 m宽覆盖(wide field of view,WFV)影像,构建16 m分辨率NDVI时间序列,以河北省唐山市南部区域为研究区,开展作物分类研究。该文采用覆盖作物完整生长期的GF-1数据构建NDVI时间序列,避免了利用自然年(1-12月)数据构建NDVI时间序列的不足,有助于作物信息的提取。通过分析样地的NDVI时序曲线,发现GF-1/WFV NDVI时间序列能够清晰地区分不同作物的物候差异,捕捉作物特有的生长特性,而且能够识别研究区当年的作物种植模式。该文分别采用最大似然法、马氏距离、最小距离、神经网络分类、支持向量机(support vector machine,SVM)等分类方法,基于GF-1/WFV NDVI时间序列对研究区作物进行分类,研究结果表明SVM分类方法总体精度最高,达到96.33%。同时该文还采用时间序列谐波分析法(harmonic analysis of time series,HANTS)对NDVI时间序列进行了平滑处理,结果表明处理后的NDVI时间序列能更好地描述作物的物候特性,作物分类精度得到进一步提高。
文摘由于热带地区的雨季时间较长,云覆盖严重,基于光学影像难以准确提取区域内的水稻种植模式。该文以泰国湄南河流域中部平原水稻种植区为例,基于Sentinel-1SAR时间序列数据,提出一种融合时序统计参数与时序曲线相似性特征的热带地区水稻种植结构提取方法。首先利用年内所有可获取的Sentinel-1SAR数据,分别基于像元和基于对象构建后向散射系数时间序列曲线,提取时序特征参数;利用动态时间规整(Dynamic Time Warping,DTW)算法,计算后向散射系数时序曲线与地物标准曲线间的隶属度;将时序特征参数、时序曲线隶属度相结合,利用随机森林模型进行机器学习监督分类,提取研究区的水稻种植信息并评价分类精度。结果表明,基于Sentinel-1SAR时序特征融合的算法可以较好地提高水稻种植结构分类精度。其中,基于对象的分类算法的单季稻提取用户精度为81.46%,生产者精度为82.00%;双季稻用户精度为88.0%,生产者精度为84.08%,均优于基于像元的分类算法。研究结果可为多云多雨的热带地区水稻种植信息提取提供一种新的思路。