It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems i...It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.展开更多
The research was carried out on the territory of the Karelian Isthmus of the Leningrad Region using Sentinel-2B images and data from a network of ground sample plots. The ground sample plots are located in the studied...The research was carried out on the territory of the Karelian Isthmus of the Leningrad Region using Sentinel-2B images and data from a network of ground sample plots. The ground sample plots are located in the studied territory mainly in a regular manner, laid and surveyed according to the ICP-Forests methodology with some additions. The total area of the sample plots is a small part of the entire study area. One of the objectives of the study was to determine the possibility of using the k-NN (nearest neighbor method) to assess the state of forests throughout the whole studied territory by joint statistical processing of data from ground sample plots and Sentinel-2B imagery. The data of the ground-based sample plots were divided into 2 equal parts, one for the application of the k-NN method, the second for checking the results of the method application. The systematic error in determining the mean damage class of the tree stands on sample plots by the k-NN method turned out to be zero, the random error is equal to one point. These results offer a possibility to determine the state of the forest in the entire study area. The second objective of the study was to examine the possibility of using the short-wave vegetation index (SWVI) to assess the state of forests. As a result, a close statistically reliable dependence of the average score of the state of plantations and the value of the SWVI index was established, which makes it possible to use the established relationship to determine the state of forests throughout the studied territory. The joint use and statistical processing of remotely sensed data and ground-based test areas by the two studied methods make it possible to assess the state of forests throughout the large studied area within the image. The results obtained can be used to monitor the state of forests in large areas and design appropriate forestry protective measures.展开更多
本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光...本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。展开更多
Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the a...Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset.展开更多
Accurate landslide extraction is significant for landslide disaster prevention and control.Remote sensing images have been widely used in landslide investigation,and landslide extraction methods based on deep learning...Accurate landslide extraction is significant for landslide disaster prevention and control.Remote sensing images have been widely used in landslide investigation,and landslide extraction methods based on deep learning combined with remote sensing images(such as U-Net)have received a lot of attention.However,because of the variable shape and texture features of landslides in remote sensing images,the rich spectral features,and the complexity of their surrounding features,landslide extraction using U-Net can lead to problems such as false detection and missed detection.Therefore,this study introduces the channel attention mechanism called the squeeze-and-excitation network(SENet)in the feature fusion part of U-Net;the study also constructs an attention U-Net landside extraction model combining SENet and U-Net,and uses Sentinel-2A remote sensing images for model training and validation.The extraction results are evaluated through different evaluation metrics and compared with those of two models:U-Net and U-Net Backbone(U-Net Without Skip Connection).The results show that proposed the model can effectively extract landslides based on Sentinel-2A remote sensing images with an F1 value of 87.94%,which is about 2%and 3%higher than U-Net and U-Net Backbone,respectively,with less false detection and more accurate extraction results.展开更多
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin...Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.展开更多
Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change informatio...Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change information could be acquired by deep learning methods using high-resolution remote sensing images.However,deforestation detection based on deep learning on a large-scale region with high-resolution images required huge computational resources.Therefore,there was an urgent need for a fast and accurate deforestation detection model.In this study,we proposed an interesting but effective re-parameterization deforestation detection model,named RepDDNet.Unlike other existing models designed for deforestation detection,the main feature of RepDDNet was its decoupling feature,which means that it allowed the multi-branch structure in the training stages to be converted into a plain structure in the inference stage,thus the computation efficiency can be significantly improved in the inference stage while maintaining the accuracy unchanged.A large-scale experiment was carried out in Ankang city with 2-meter high-resolution remote sensing images(the total area of it was over 20,000 square kilometers),and the result indicated that the model computation efficiency could be improved by nearly 30%compared with the model without re-parameterization.Additionally,compared with other lightweight models,RepDDNet also displayed a trade-off between accuracy and computation efficiency.展开更多
The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolut...The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolution of natural and artificial environments on Earth at a large scale.Based on the advanced CNN method high-resolution net(HRNet)and multi-temporal HR-RSIs,a framework is proposed for monitoring a green evolution of courtyard buildings characterized by their courtyards being roofed(CBR).The proposed framework consists of an expert module focusing on scenes analysis,a CV module for automatic detection,an evaluation module containing thresholds,and an output module for data analysis.Based on this,the changes in the adoption of different CBR technologies(CBRTs),including light-translucent CBRTs(LT-CBRTs)and non-lighttranslucent CBRTs(NLT-CBRTs),in 24 villages in southern Hebei were identified from 2007 to 2021.The evolution of CBRTs was featured as an inverse S-curve,and differences were found in their evolution stage,adoption ratio,and development speed for different villages.LT-CBRTs are the dominant type but are being replaced and surpassed by NLT-CBRTs in some villages,characterizing different preferences for the technology type of villages.The proposed research framework provides a reference for the evolution monitoring of vernacular buildings,and the identified evolution laws enable to trace and predict the adoption of different CBRTs in a particular village.This work lays a foundation for future exploration of the occurrence and development mechanism of the CBR phenomenon and provides an important reference for the optimization and promotion of CBRTs.展开更多
为了能够利用遥感图像快速准确地提取围海养殖矢量信息,本文选取养殖水体、堤坝及育苗室等交错分布的海参围海养殖区域作为研究区域,根据研究区域Sentinel-2遥感影像的光谱特征,选用归一化差异水体指数(Normalized Difference Water Ind...为了能够利用遥感图像快速准确地提取围海养殖矢量信息,本文选取养殖水体、堤坝及育苗室等交错分布的海参围海养殖区域作为研究区域,根据研究区域Sentinel-2遥感影像的光谱特征,选用归一化差异水体指数(Normalized Difference Water Index,NDWI)、改进归一化差异水体指数(Modified Normalized Difference Water Index,MNDWI)和增强水体指数(Enhanced Water Index,EWI)三类水体指数,分别进行提取实验,利用同时期高空间分辨率的高分二号卫星(GF-2)影像作为参考,验证不同方法的提取精度,精度评价结果表明:相较MNDWI和EWI两类水体指数,NDWI的分类精度更高,且利用NDWI提取研究区域的围海养殖信息的效果更好,所以该方法可在养殖区域的动态监测和规划管理中发挥数据支撑作用。展开更多
Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rel...Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity.This direction is more significant where traditional geochemical data are not ideal,which is the case for evaluating unconventional resources,such as tailing storage facilities(TSFs),because they are not static due to sedimentation,compaction and changes associated with hydrospheric and lithospheric processes(e.g.,erosion,saltation and mobility of chemical constituents).In this paper,we generate big secondary geochemical data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using TSFs from the Witwatersrand Basin(South Africa).Using spatially fused remote sensing and legacy geochemical data on the Dump 20 TSF,we trained a machine learning model to predict in-situ gold grades.Subsequently,we deployed the model to the Lindum TSF,which is 3 km away,over a period of a few years(2015-2019).We were able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum TSF.Additionally,we were able to infer extraction sequencing(to the resolution of the data),acid mine drainage formation and seasonal migration.These findings suggest that dynamic mineral resource models and live geochemical monitoring(e.g.,of elemental mobility and structural changes)are possible without additional physical sampling.展开更多
基金National Natural Science Foundation of China(No.41271435)National Natural Science Foundation of China Youth Found(No.41301479)。
文摘It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.
文摘The research was carried out on the territory of the Karelian Isthmus of the Leningrad Region using Sentinel-2B images and data from a network of ground sample plots. The ground sample plots are located in the studied territory mainly in a regular manner, laid and surveyed according to the ICP-Forests methodology with some additions. The total area of the sample plots is a small part of the entire study area. One of the objectives of the study was to determine the possibility of using the k-NN (nearest neighbor method) to assess the state of forests throughout the whole studied territory by joint statistical processing of data from ground sample plots and Sentinel-2B imagery. The data of the ground-based sample plots were divided into 2 equal parts, one for the application of the k-NN method, the second for checking the results of the method application. The systematic error in determining the mean damage class of the tree stands on sample plots by the k-NN method turned out to be zero, the random error is equal to one point. These results offer a possibility to determine the state of the forest in the entire study area. The second objective of the study was to examine the possibility of using the short-wave vegetation index (SWVI) to assess the state of forests. As a result, a close statistically reliable dependence of the average score of the state of plantations and the value of the SWVI index was established, which makes it possible to use the established relationship to determine the state of forests throughout the studied territory. The joint use and statistical processing of remotely sensed data and ground-based test areas by the two studied methods make it possible to assess the state of forests throughout the large studied area within the image. The results obtained can be used to monitor the state of forests in large areas and design appropriate forestry protective measures.
文摘本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。
基金National Key Research and Development Program of China(No.2017YFC0405806)。
文摘Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset.
基金supported by the Project Supported by the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation Ministry of Natural Resources[grant number KF-2021-06-014]the National Natural Scientific Foundation of China[grant number 42201459]+2 种基金the Central Government to Guide Local Scientific and Technological Development[grant number 22ZY1QA005]Tianyou Youth Talent Lift Program of Lanzhou Jiaotong University,Young Doctoral Fund Project of Higher Education Institutions in Gansu Province[grant number 2022QB-058]State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR,CASM(2022-03-03).
文摘Accurate landslide extraction is significant for landslide disaster prevention and control.Remote sensing images have been widely used in landslide investigation,and landslide extraction methods based on deep learning combined with remote sensing images(such as U-Net)have received a lot of attention.However,because of the variable shape and texture features of landslides in remote sensing images,the rich spectral features,and the complexity of their surrounding features,landslide extraction using U-Net can lead to problems such as false detection and missed detection.Therefore,this study introduces the channel attention mechanism called the squeeze-and-excitation network(SENet)in the feature fusion part of U-Net;the study also constructs an attention U-Net landside extraction model combining SENet and U-Net,and uses Sentinel-2A remote sensing images for model training and validation.The extraction results are evaluated through different evaluation metrics and compared with those of two models:U-Net and U-Net Backbone(U-Net Without Skip Connection).The results show that proposed the model can effectively extract landslides based on Sentinel-2A remote sensing images with an F1 value of 87.94%,which is about 2%and 3%higher than U-Net and U-Net Backbone,respectively,with less false detection and more accurate extraction results.
基金funded by the National Natural Science Foundation of China(Grant No.40571029).
文摘Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.
基金supported by the Shenzhen Science and Technology Innovation Project(No.ZDSYS20210623091808026)supported in part by the National Natural Science Foundation of China(General Program,No.42071351)+1 种基金the National Key Research and Development Program of China(No.2020YFA0608501)the Chongqing Science and Technology Bureau technology innovation and application development special(cstc2021jscx-gksb0116).
文摘Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change information could be acquired by deep learning methods using high-resolution remote sensing images.However,deforestation detection based on deep learning on a large-scale region with high-resolution images required huge computational resources.Therefore,there was an urgent need for a fast and accurate deforestation detection model.In this study,we proposed an interesting but effective re-parameterization deforestation detection model,named RepDDNet.Unlike other existing models designed for deforestation detection,the main feature of RepDDNet was its decoupling feature,which means that it allowed the multi-branch structure in the training stages to be converted into a plain structure in the inference stage,thus the computation efficiency can be significantly improved in the inference stage while maintaining the accuracy unchanged.A large-scale experiment was carried out in Ankang city with 2-meter high-resolution remote sensing images(the total area of it was over 20,000 square kilometers),and the result indicated that the model computation efficiency could be improved by nearly 30%compared with the model without re-parameterization.Additionally,compared with other lightweight models,RepDDNet also displayed a trade-off between accuracy and computation efficiency.
基金supported by National Natural Science Foundation of China (No.52108010).
文摘The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolution of natural and artificial environments on Earth at a large scale.Based on the advanced CNN method high-resolution net(HRNet)and multi-temporal HR-RSIs,a framework is proposed for monitoring a green evolution of courtyard buildings characterized by their courtyards being roofed(CBR).The proposed framework consists of an expert module focusing on scenes analysis,a CV module for automatic detection,an evaluation module containing thresholds,and an output module for data analysis.Based on this,the changes in the adoption of different CBR technologies(CBRTs),including light-translucent CBRTs(LT-CBRTs)and non-lighttranslucent CBRTs(NLT-CBRTs),in 24 villages in southern Hebei were identified from 2007 to 2021.The evolution of CBRTs was featured as an inverse S-curve,and differences were found in their evolution stage,adoption ratio,and development speed for different villages.LT-CBRTs are the dominant type but are being replaced and surpassed by NLT-CBRTs in some villages,characterizing different preferences for the technology type of villages.The proposed research framework provides a reference for the evolution monitoring of vernacular buildings,and the identified evolution laws enable to trace and predict the adoption of different CBRTs in a particular village.This work lays a foundation for future exploration of the occurrence and development mechanism of the CBR phenomenon and provides an important reference for the optimization and promotion of CBRTs.
文摘为了能够利用遥感图像快速准确地提取围海养殖矢量信息,本文选取养殖水体、堤坝及育苗室等交错分布的海参围海养殖区域作为研究区域,根据研究区域Sentinel-2遥感影像的光谱特征,选用归一化差异水体指数(Normalized Difference Water Index,NDWI)、改进归一化差异水体指数(Modified Normalized Difference Water Index,MNDWI)和增强水体指数(Enhanced Water Index,EWI)三类水体指数,分别进行提取实验,利用同时期高空间分辨率的高分二号卫星(GF-2)影像作为参考,验证不同方法的提取精度,精度评价结果表明:相较MNDWI和EWI两类水体指数,NDWI的分类精度更高,且利用NDWI提取研究区域的围海养殖信息的效果更好,所以该方法可在养殖区域的动态监测和规划管理中发挥数据支撑作用。
基金supported by a Department of Science and Innovation(DSI)-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘Evolution in geoscientific data provides the mineral industry with new opportunities.A direction of geochemical data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on data velocity.This direction is more significant where traditional geochemical data are not ideal,which is the case for evaluating unconventional resources,such as tailing storage facilities(TSFs),because they are not static due to sedimentation,compaction and changes associated with hydrospheric and lithospheric processes(e.g.,erosion,saltation and mobility of chemical constituents).In this paper,we generate big secondary geochemical data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using TSFs from the Witwatersrand Basin(South Africa).Using spatially fused remote sensing and legacy geochemical data on the Dump 20 TSF,we trained a machine learning model to predict in-situ gold grades.Subsequently,we deployed the model to the Lindum TSF,which is 3 km away,over a period of a few years(2015-2019).We were able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum TSF.Additionally,we were able to infer extraction sequencing(to the resolution of the data),acid mine drainage formation and seasonal migration.These findings suggest that dynamic mineral resource models and live geochemical monitoring(e.g.,of elemental mobility and structural changes)are possible without additional physical sampling.