期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
Retrieving chlorophyll content and equivalent water thickness of Moso bamboo(Phyllostachys pubescens) forests under Pantana phyllostachysae Chao-induced stress from Sentinel-2A/B images in a multiple LUTs-based PROSAIL framework 被引量:1
1
作者 Zhanghua Xu Anqi He +10 位作者 Yiwei Zhang Zhenbang Hao Yifan Li Songyang Xiang Bin Li Lingyan Chen Hui Yu Wanling Shen Xuying Huang Xiaoyu Guo Zenglu Li 《Forest Ecosystems》 SCIE CSCD 2023年第2期252-267,共16页
Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT w... Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems. 展开更多
关键词 Moso bamboo Chlorophyll content Equivalent water thickness PROSAIL model Multiple LUTs Pantana phyllostachysae Chao sentinel-2A/B images
下载PDF
基于多时相Sentinel-2卫星影像的冬小麦面积提取
2
作者 陈雨琪 席瑞 +6 位作者 陈佳麒 章健 高国军 刘海威 盛莉 王福民 刘占宇 《杭州师范大学学报(自然科学版)》 CAS 2024年第2期209-216,共8页
及时准确地提取冬小麦种植信息,对开展冬小麦农情遥感监测具有重要的意义.以杭州市余杭区冬小麦越冬期(2021-12-04)、扬花期(2022-04-08)和乳熟期(2022-05-03)Sentinel-2遥感影像为数据源,分别采用最大似然法、支持向量机、归一化差值... 及时准确地提取冬小麦种植信息,对开展冬小麦农情遥感监测具有重要的意义.以杭州市余杭区冬小麦越冬期(2021-12-04)、扬花期(2022-04-08)和乳熟期(2022-05-03)Sentinel-2遥感影像为数据源,分别采用最大似然法、支持向量机、归一化差值植被指数(normalized difference vegetation index,NDVI)相加和相减合成运算提取冬小麦种植面积.结合冬小麦地面调查数据与实测种植面积,对不同方法的提取结果进行精度评价.结果显示,利用越冬期影像NDVI阈值将常绿植被区(茶园、林地)掩膜处理,对非常绿植被区(建筑、水体、冬小麦)扬花期与乳熟期影像NDVI值进行和值运算,是提取余杭区冬小麦种植面积的最佳方法,面积精度为91.96%,说明基于多时相遥感影像结合植被物候特征与典型地物类型,能够实现冬小麦种植面积的高精度提取. 展开更多
关键词 冬小麦 sentinel-2卫星 多时相遥感影像 植被分类 种植面积提取
下载PDF
Mapping soil organic matter in cultivated land based on multi-year composite images on monthly time scales
3
作者 Jie Song Dongsheng Yu +4 位作者 Siwei Wang Yanhe Zhao Xin Wang Lixia Ma Jiangang Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1393-1408,共16页
Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to pred... Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to predict SOM with high accuracy using multiyear synthetic remote sensing variables on a monthly scale.We obtained 12 monthly synthetic Sentinel-2 images covering the study area from 2016 to 2021 through the Google Earth Engine(GEE)platform,and reflectance bands and vegetation indices were extracted from these composite images.Then the random forest(RF),support vector machine(SVM)and gradient boosting regression tree(GBRT)models were tested to investigate the difference in SOM prediction accuracy under different combinations of monthly synthetic variables.Results showed that firstly,all monthly synthetic spectral bands of Sentinel-2 showed a significant correlation with SOM(P<0.05)for the months of January,March,April,October,and November.Secondly,in terms of single-monthly composite variables,the prediction accuracy was relatively poor,with the highest R^(2)value of 0.36 being observed in January.When monthly synthetic environmental variables were grouped in accordance with the four quarters of the year,the first quarter and the fourth quarter showed good performance,and any combination of three quarters was similar in estimation accuracy.The overall best performance was observed when all monthly synthetic variables were incorporated into the models.Thirdly,among the three models compared,the RF model was consistently more accurate than the SVM and GBRT models,achieving an R^(2)value of 0.56.Except for band 12 in December,the importance of the remaining bands did not exhibit significant differences.This research offers a new attempt to map SOM with high accuracy and fine spatial resolution based on monthly synthetic Sentinel-2 images. 展开更多
关键词 soil organic matter sentinel-2 monthly synthetic images machine learning model spatial prediction
下载PDF
Winter wheat yield estimation based on assimilated Sentinel-2 images with the CERES-Wheat model 被引量:2
4
作者 LIU Zheng-chun WANG Chao +4 位作者 Bl Ru-tian ZHU Hong-fen HE Peng JING Yao-dong YANG Wu-de 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第7期1958-1968,共11页
Assimilating Sentinel-2 images with the CERES-Wheat model can improve the precision of winter wheat yield estimates at a regional scale. To verify this method, we applied the ensemble Kalman filter(EnKF) to assimilate... Assimilating Sentinel-2 images with the CERES-Wheat model can improve the precision of winter wheat yield estimates at a regional scale. To verify this method, we applied the ensemble Kalman filter(EnKF) to assimilate the leaf area index(LAI) derived from Sentinel-2 data and simulated by the CERES-Wheat model. From this, we obtained the assimilated daily LAI during the growth stage of winter wheat across three counties located in the southeast of the Loess Plateau in China: Xiangfen, Xinjiang, and Wenxi. We assigned LAI weights at different growth stages by comparing the improved analytic hierarchy method, the entropy method, and the normalized combination weighting method, and constructed a yield estimation model with the measurements to accurately estimate the yield of winter wheat. We found that the changes of assimilated LAI during the growth stage of winter wheat strongly agreed with the simulated LAI. With the correction of the derived LAI from the Sentinel-2 images, the LAI from the green-up stage to the heading–filling stage was enhanced, while the LAI decrease from the milking stage was slowed down, which was more in line with the actual changes of LAI for winter wheat. We also compared the simulated and derived LAI and found the assimilated LAI had reduced the root mean square error(RMSE) by 0.43 and 0.29 m^(2) m^(–2), respectively, based on the measured LAI. The assimilation improved the estimation accuracy of the LAI time series. The highest determination coefficient(R2) was 0.8627 and the lowest RMSE was 472.92 kg ha^(–1) in the regression of the yields estimated by the normalized weighted assimilated LAI method and measurements. The relative error of the estimated yield of winter wheat in the study counties was less than 1%, suggesting that Sentinel-2 data with high spatial-temporal resolution can be assimilated with the CERES-Wheat model to obtain more accurate regional yield estimates. 展开更多
关键词 data assimilation CERES-Wheat model sentinel-2 images combined weighting method yield estimation
下载PDF
Image-Based Feature Extraction Technique for Inclined Crack Quanti cation Using Pulsed Eddy Current
5
作者 Faris Nafah Ali Sophian +2 位作者 Md Raisuddin Khan Syamsul Bahrin Abdul Hamid Ilham Mukriz Zainal Abidin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第2期113-121,共9页
Existing eddy current non-destructive testing(NDT) techniques generally do not consider the inclination angle of inclined cracks, which potentially harms a larger region of a tested structure. This work proposes the u... Existing eddy current non-destructive testing(NDT) techniques generally do not consider the inclination angle of inclined cracks, which potentially harms a larger region of a tested structure. This work proposes the use of 2 D scan images generated by using pulsed eddy current(PEC) non-destructive testing(NDT) technique in the quantification of the inclination and depth of inclined cracks. The image-based feature extraction technique e ectively identifies the crack axis, which consequently enables extraction of features from the extracted linear scans. The technique extracts linear scans from the images to allow the extraction of three novel image-based features, namely the length of extracted linear scans(LLS), the linear scan skewness(LSS), and the highest value on linear scan(LSmax). The correlation of the three features to surface crack inclination angles and depths were analysed and found to be highly dependent on the crack depths, while only LLS and LSS are correlated to the crack inclination angles. 展开更多
关键词 PULSED EDDY current 2D SCAN imaging Feature extraction image processing Inclined cracks
下载PDF
基于改进U^(2)Net的岩石薄片图像分割 被引量:1
6
作者 舒小锋 吴晓红 +2 位作者 卿粼波 滕奇志 罗彬彬 《计算机系统应用》 2024年第2期159-165,共7页
了解岩石的孔隙度、孔径分布、孔隙连通性等特征对于油气的寻找和开采有着重要的意义,而这些特征的分析和判断需要借助岩石薄片图像分割技术.岩石薄片图像有大量细小颗粒,这些颗粒之间的边缘特征十分相似,无法做出精准的区分,同时制造... 了解岩石的孔隙度、孔径分布、孔隙连通性等特征对于油气的寻找和开采有着重要的意义,而这些特征的分析和判断需要借助岩石薄片图像分割技术.岩石薄片图像有大量细小颗粒,这些颗粒之间的边缘特征十分相似,无法做出精准的区分,同时制造切片过程中染色不均会造成薄片孔隙的颜色特征不平衡而导致无法分割.因此为了改善岩石薄片分割效果,本文提出基于一种改进的U^(2)Net的分割算法.主要内容如下:(1)以U^(2)Net网络为骨干进行改进,结合coordinate attention注意力机制,用来提高模型对图像特征的表达能力.(2)通过引入多尺度特征提取模块,增加卷积层的感知区域,且能够利用特征图的多尺度特征信息.实验证明,该方法与传统分割方法和其他分割网络相比在较小颗粒的分割上表现更好,所提出的算法具有较高的分割准确度和鲁棒性. 展开更多
关键词 注意力机制 岩石薄片图像 图像分割 U^(2)Net 多尺度特征提取
下载PDF
A landslide extraction method of channel attention mechanismU-Net network based on Sentinel-2A remote sensing images
7
作者 Hesheng Chen Yi He +5 位作者 Lifeng Zhang Sheng Yao Wang Yang Yumin Fang Yaoxiang Liu Binghai Gao 《International Journal of Digital Earth》 SCIE EI 2023年第1期552-577,共26页
Accurate landslide extraction is significant for landslide disaster prevention and control.Remote sensing images have been widely used in landslide investigation,and landslide extraction methods based on deep learning... Accurate landslide extraction is significant for landslide disaster prevention and control.Remote sensing images have been widely used in landslide investigation,and landslide extraction methods based on deep learning combined with remote sensing images(such as U-Net)have received a lot of attention.However,because of the variable shape and texture features of landslides in remote sensing images,the rich spectral features,and the complexity of their surrounding features,landslide extraction using U-Net can lead to problems such as false detection and missed detection.Therefore,this study introduces the channel attention mechanism called the squeeze-and-excitation network(SENet)in the feature fusion part of U-Net;the study also constructs an attention U-Net landside extraction model combining SENet and U-Net,and uses Sentinel-2A remote sensing images for model training and validation.The extraction results are evaluated through different evaluation metrics and compared with those of two models:U-Net and U-Net Backbone(U-Net Without Skip Connection).The results show that proposed the model can effectively extract landslides based on Sentinel-2A remote sensing images with an F1 value of 87.94%,which is about 2%and 3%higher than U-Net and U-Net Backbone,respectively,with less false detection and more accurate extraction results. 展开更多
关键词 sentinel-2A remote sensing image landslide extraction U-Net attention mechanism deep learning
原文传递
U^(2)-Net在建筑物提取中的边缘精度分析
8
作者 程鸿 刘坚 +1 位作者 李雪 李旭东 《价值工程》 2024年第29期89-91,共3页
随着城市化的进程和遥感科学技术的发展,在高分辨遥感影像中进行建筑物提取一直是摄影测量与遥感领域的一个热点研究主题。针对遥感影像中提取建筑物存在边缘模糊的问题,本文运用U^(2)-Net网络算法提取建筑物,并与lr-aspp、fcn、deeplab... 随着城市化的进程和遥感科学技术的发展,在高分辨遥感影像中进行建筑物提取一直是摄影测量与遥感领域的一个热点研究主题。针对遥感影像中提取建筑物存在边缘模糊的问题,本文运用U^(2)-Net网络算法提取建筑物,并与lr-aspp、fcn、deeplab_v3三种网络算法分别进行了建筑物提取对比实验;结果表明U^(2)-Net网络,在不损失预测精度的情况下,耗时较短,且准确率可提升至97.478%,可较好地解决建筑物提取中的边缘模糊问题。 展开更多
关键词 建筑物提取 U^(2)-Net 边缘模糊 预测精度 遥感影像
下载PDF
面向Sentinel-2影像的亚像元级水体提取方法
9
作者 熊龙海 何颖清 +1 位作者 刘茉默 李俊 《测绘通报》 CSCD 北大核心 2023年第11期122-127,共6页
结合Sentinel-2影像及其他高分辨率卫星数据进行长序列、高频次、大范围的水面率、蓄水量、生态流量等水资源要素监测具有重要意义。为了提高水体提取精度,解决利用多源中高分辨率卫星数据提取水体时的空间尺度效应问题,本文提出了一种... 结合Sentinel-2影像及其他高分辨率卫星数据进行长序列、高频次、大范围的水面率、蓄水量、生态流量等水资源要素监测具有重要意义。为了提高水体提取精度,解决利用多源中高分辨率卫星数据提取水体时的空间尺度效应问题,本文提出了一种面向Sentinel-2影像的亚像元级水体提取方法(简称SWES)。首先利用RWI提取纯水体像元,然后利用膨胀算法提取水陆边界混合像元,最后为解决地物的类内光谱变化问题,采用考虑空间信息的多端元光谱混合分析算法(MESMA)求解水陆混合像元中的水体丰度。3个试验区的结果均表明,SWES取得了较好效果,平均RMSE为0.147,水体提取效果均优于自动亚像元水体提取方法(简称ASWM),尤其在水陆混合像元较多的坑塘养殖区。SWES在试验区获取的水体面积也有较高精度,平均相对误差为8.03%,低于ASWM的20.23%,结果表明SWES能够有效提升水域面积提取精度。 展开更多
关键词 亚像元 水体提取 水陆混合像元 多端元光谱混合分析 sentinel-2影像
下载PDF
基于边缘U^(2)-Net的视盘分割方法
10
作者 王雪 武现阳 +2 位作者 涂家亮 于洁茹 宁春玉 《长春理工大学学报(自然科学版)》 2024年第3期93-100,共8页
彩色眼底图像中的视盘分割在识别眼科疾病中起着关键作用。针对因各种因素影响的视盘边缘分割不准确及分割算法效率低问题,提出一种基于轻量级U^(2)-Net、融入边缘注意力机制的视盘自动分割方法。该方法以轻量级U^(2)-Net为主干网络,使... 彩色眼底图像中的视盘分割在识别眼科疾病中起着关键作用。针对因各种因素影响的视盘边缘分割不准确及分割算法效率低问题,提出一种基于轻量级U^(2)-Net、融入边缘注意力机制的视盘自动分割方法。该方法以轻量级U^(2)-Net为主干网络,使用视盘感兴趣区域提取的预处理方式去除无关特征,同时引入边缘注意力机制增强对视盘边缘特征的提取能力。在Drishti_GS和REFUGE两个公开数据集上的F1分数分别达到97.82%和97.36%,Dice相似系数分别达到97.15%和96.64%,IOU分别达到94.47%和93.50%,与其他网络模型相比表现出优越的分割性能,具有临床应用价值。 展开更多
关键词 彩色眼底图像 视盘分割 U^(2)-Net 感兴趣区域提取 边缘注意力
下载PDF
基于Sentinel-2的潮间红树林提取方法 被引量:8
11
作者 徐芳 张英 +2 位作者 翟亮 刘佳 谷祥辉 《测绘通报》 CSCD 北大核心 2020年第2期49-54,共6页
位于潮间带的红树林可能在高潮时被海水淹没的特点,使得传统的植被提取方法在红树林信息提取方面存在局限性。本文在对比分析了出露的红树林、高潮水位淹没的红树林、海水水体的光谱特征后,提出了一种利用归一化潮间红树林指数(NIMI)提... 位于潮间带的红树林可能在高潮时被海水淹没的特点,使得传统的植被提取方法在红树林信息提取方面存在局限性。本文在对比分析了出露的红树林、高潮水位淹没的红树林、海水水体的光谱特征后,提出了一种利用归一化潮间红树林指数(NIMI)提取潮间带红树林的方法。该指数是由植被强吸收的红波段,强反射的两个红边波段和近红外波段组成的归一化表达式。利用该指数对福建省龙海九龙江口湿地的红树林进行了分类提取,提取结果与高分二号影像目视验证和现场调查结果进行了对照。结果显示,该方法提取红树林的用户精度达到93.98%,并显著优于利用归一化水体指数(NDWI)、归一化植被指数(NDVI)及随机森林的结果。 展开更多
关键词 红树林 淹没 提取 sentinel-2影像 归一化潮间红树林指数
下载PDF
Asymmetrically hypointense veins on T2~*w imaging and susceptibility-weighted imaging in ischemic stroke 被引量:14
12
作者 Ulf Jensen-Kondering Ruwen Bhm 《World Journal of Radiology》 CAS 2013年第4期156-165,共10页
AIM:To review the literature on the assessment of venous vessels to estimate the penumbra on T2*w imaging and susceptibility-weighted imaging (SWI). METHODS:Literature that reported on the assessment of penumbra by T2... AIM:To review the literature on the assessment of venous vessels to estimate the penumbra on T2*w imaging and susceptibility-weighted imaging (SWI). METHODS:Literature that reported on the assessment of penumbra by T2*w imaging or SWI and used a validation method was included. PubMed and relevant stroke and magnetic resonance imaging (MRI) related conference abstracts were searched. Abstracts that had overlapping content with full text articles were excluded. The retrieved literature was scanned for further relevant references. Only clinical literature published in English was considered, patients with Moya-Moya syndrome were disregarded. Data is given as cumulative absolute and relative values, ranges are given where appropriate. RESULTS:Forty-three publications including 1145 patients could be identified. T2*w imaging was used in 16 publications (627 patients), SWI in 26 publications (453 patients). Only one publication used both (65 patients). The cumulative presence of hypointense vessel sign was 54% (range 32%-100%) for T2* (668 patients) and 81% (range 34%-100%) for SWI (334 patients). There was rare mentioning of interrater agreement (6 publications, 210 patients) and reliability (1 publication, 20 patients) but the numbers reported ranged from good to excellent. In most publications (n = 22) perfusion MRI was used as a validation method (617 patients). More patients were scanned in the subacute than in the acute phase (596 patients vs 320 patients). Clinical outcome was reported in 13 publications (521 patients) but was not consistent. CONCLUSION:The low presence of vessels signs on T2*w imaging makes SWI much more promising. More research is needed to obtain formal validation and quantification. 展开更多
关键词 Acute ISCHEMIC stroke Oxygen extraction fraction Susceptibility-weighted imagING T2* PENUMBRA
下载PDF
基于Sentinel-2数据的祁连山草地自动提取策略
13
作者 邢瑾 候建西 +3 位作者 刘勇 张寅丹 刘立 郭根发 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第4期473-482,共10页
提出一种基于影像重叠区域特征迁移的大区域草地自动提取策略,评估重叠区域样本量对模型性能的影响,集成神经网络分类器和平衡分布自适应模型,仅利用重叠区域信息,自适应平衡因时相差异造成的草地特征变化,迁移拓展完成大区域草地信息... 提出一种基于影像重叠区域特征迁移的大区域草地自动提取策略,评估重叠区域样本量对模型性能的影响,集成神经网络分类器和平衡分布自适应模型,仅利用重叠区域信息,自适应平衡因时相差异造成的草地特征变化,迁移拓展完成大区域草地信息的精准提取.以Sentinel-2影像为例,开展甘肃祁连山国家级自然保护区西北部草地制图试验,在6景草地分类中,单幅分类总体精度和卡帕系数均大于89.09%和0.75,重叠区域的样本量仅达到10%时分类性能趋于稳定.结果表明该策略在草地制图中的有效性及拓展到大区域影像综合制图中的潜力. 展开更多
关键词 草地提取 sentinel-2影像 重叠区 平衡分布自适应 反向传播神经网络
下载PDF
Mapping soil organic matter content using Sentinel-2 syntheticimages at different time intervals in Northeast China
14
作者 Chong Luo Wenqi Zhang +1 位作者 Xinle Zhang Huanjun Liu 《International Journal of Digital Earth》 SCIE EI 2023年第1期1094-1107,共14页
Mapping soil organic matter(SOM)content has become an important application of digital soil mapping.In this study,we processed all Sentinel-2 images covering the bare-soil period(March to June)in Northeast China from ... Mapping soil organic matter(SOM)content has become an important application of digital soil mapping.In this study,we processed all Sentinel-2 images covering the bare-soil period(March to June)in Northeast China from 2019 to 2022 and integrated the observation results into synthetic materials with four defined time intervals(10,15,20,and 30 d).Then,we used synthetic images corresponding to different time periods to conduct SOM mapping and determine the optimal time interval and time period beforefinally assessing the impacts of adding environmental covariates.The results showed the following:(1)in SOM mapping,the highest accuracy was obtained using day-of-year(DOY)120 to 140 synthetic images with 20 d time intervals,as well as with different time intervals,ranked as follows:20 d>30 d>15 d>10 d;(2)when using synthetic images at different time intervals to predict SOM,the best time period for predicting SOM was always within May;and(3)adding environmental covariates effectively improved the SOM mapping performance,and the multiyear average temperature was the most important factor.In general,our results demonstrated the valuable potential of SOM mapping using multiyear synthetic imagery,thereby allowing detailed mapping of large areas of cultivated soil. 展开更多
关键词 sentinel-2 environmental covariates baresoilperiod synthetic images different time intervals soilorganic matter
原文传递
基于改进R^(2) CNN 的遥感图像船舶检测方法研究
15
作者 林堉斌 邵哲平 林盛泓 《中国航海》 CSCD 北大核心 2023年第2期106-112,共7页
为深入研究光学遥感图像中的船舶检测问题,提升检测精度和降低模型复杂度,设计基于改进旋转区域卷积和神经网络(Rotational Region Convolutional Neural Networks),R^(2)CNN的两阶段旋转框检测模型。在模型的第一阶段使用水平框作为候... 为深入研究光学遥感图像中的船舶检测问题,提升检测精度和降低模型复杂度,设计基于改进旋转区域卷积和神经网络(Rotational Region Convolutional Neural Networks),R^(2)CNN的两阶段旋转框检测模型。在模型的第一阶段使用水平框作为候选区域;在模型第二阶段引入水平框预测分支,并且设计一种间接预测角度的回归模型;在测试阶段进行旋转框非极大值抑制时,设计基于掩码矩阵的旋转框IoU(Intersection over Union)算法。试验结果显示:改进R^(2)CNN模型在HRSC2016(High Resolution Ship Collection 2016)数据集上取得81.0%的平均精确度,相比其他模型均有不同程度的提升,说明改进R^(2)CNN在简化模型的同时能有效提升使用旋转框检测船舶的性能。 展开更多
关键词 船舶检测 遥感图像 卷积神经网络 R^(2)CNN模型 旋转框检测 候选区域提取
下载PDF
The application of ResU-net and OBIA for landslide detection from multi-temporal Sentinel-2 images
16
作者 Omid Ghorbanzadeh Khalil Gholamnia Pedram Ghamisi 《Big Earth Data》 EI CSCD 2023年第4期961-985,共25页
Landslide detection is a hot topic in the remote sensing community,particularly with the current rapid growth in volume(and variety)of Earth observation data and the substantial progress of computer vision.Deep learni... Landslide detection is a hot topic in the remote sensing community,particularly with the current rapid growth in volume(and variety)of Earth observation data and the substantial progress of computer vision.Deep learning algorithms,especially fully convolutional networks(FCNs),and variations like the ResU-Net have been used recently as rapid and automatic landslide detection approaches.Although FCNs have shown cutting-edge results in automatic landslide detection,accuracy can be improved by adding prior knowledge through possible frameworks.This study evaluates a rulebased object-based image analysis(OBIA)approach built on probabilities resulting from the ResU-Net model for landslide detection.We train the ResU-Net model using a landslide dataset comprising landslide inventories from various geographic regions,including our study area and test the testing area not used for training.In the OBIA stage,we frst calculate land cover and image difference indices for pre-and post-landslide multi-temporal images.Next,we use the generated indices and the resulting ResU-Net probabilities for image segmentation;the extracted landslide object candidates are then optimized using rule-based classification.In the result validation section,the landslide detection of the proposed integration of the ResU-Net with a rule-based classification of OBIA is compared with that of the ResU-Net alone.Our proposed approach improves the mean intersection-over-union of the resulting map from the ResU-Net by more than 22%. 展开更多
关键词 Deep learning(DL) Eastern Iburi Japan European Space Agency(ESA) Fully Convolutional Networks(FCNs) object-based image analysis(OBIA) rapid landslide mapping ResUnet sentinel-2
原文传递
基于MWatNet模型的河套灌区解放闸灌域灌溉水体提取
17
作者 张圣微 韩永婷 +4 位作者 刘璐 杨林 雒萌 方科迪 章骞 《农业机械学报》 EI CAS CSCD 北大核心 2024年第6期178-185,201,共9页
为提高灌溉农田中灌溉水体的识别精度,以河套灌区解放闸灌域作为研究区,基于Sentinel-2遥感影像,结合灌区实际情况对地表水体提取模型(WatNet)进行改进,得到MWatNet模型并提取灌溉水体。采用总体精度(Overall accuracy,OA)、平均交并比(... 为提高灌溉农田中灌溉水体的识别精度,以河套灌区解放闸灌域作为研究区,基于Sentinel-2遥感影像,结合灌区实际情况对地表水体提取模型(WatNet)进行改进,得到MWatNet模型并提取灌溉水体。采用总体精度(Overall accuracy,OA)、平均交并比(Mean intersection over union,MIoU)、F1值等水体提取精度指标进行综合评价。结果表明:改进后的地表水体提取模型(MWatNet)在解放闸灌域农田灌溉水体的提取上具有较好的识别精度,模型总体精度达到96%,平均交并比达到83%,F1值为80%,实地调研验证准确度为85.7%;对比原WatNet、水体语义分割模型(Deeplabv3_plus)和水体提取模型(Deepwatermapv2),MWatNet在灌溉水体提取的连结性、剔除道路和城镇干扰等方面,均表现出更好的效果和模型运行效率。利用该模型可以实现灌溉水体定量化表征,为灌溉用水调度提供了数据支撑。 展开更多
关键词 水体提取 灌溉农田 sentinel-2影像 深度学习 河套灌区 MWatNet模型
下载PDF
WorldView-2高分辨率卫星数据在西昆仑塔什库尔干地区遥感地质调查中的应用 被引量:17
18
作者 王晓鹏 杨志强 +2 位作者 康高峰 王俊峰 金谋顺 《地质找矿论丛》 CAS CSCD 2014年第3期428-432,共5页
在西昆仑成矿带塔什库尔干地区,利用WorldView-2高分辨率卫星数据开展了遥感地质综合调查研究,采用最佳指数法选择适于本区遥感解译及信息提取的8-4-3波段组合,利用波段比值、主成分变换等方法增强岩性、构造和矿化信息并进行地质解译;... 在西昆仑成矿带塔什库尔干地区,利用WorldView-2高分辨率卫星数据开展了遥感地质综合调查研究,采用最佳指数法选择适于本区遥感解译及信息提取的8-4-3波段组合,利用波段比值、主成分变换等方法增强岩性、构造和矿化信息并进行地质解译;结果表明,波段比值可识别闪长岩、大理岩、片岩等多套岩性并突出岩性之间的界线,主成分变换能增强黑云石英片岩与白色花岗岩体间界线,并能对不同片岩因矿物含量差异而呈现的不同色调、明暗程度有较好的反映。岩矿波谱测试及岩性反演和遥感矿化异常信息提取研究工作表明,大理岩等单矿物岩石波谱反演效果较好,对B1,B4,B8,B6等4个波段进行主成分变换及铁矿化信息的提取结果表明,PC3分量是铁染异常的特征主分量。利用WorldView-2数据在西部裸露地区进行矿产地质遥感综合调查,既有高地面分辨率的光学特征,又具有一定的波谱识别能力,不仅能提取大范围的矿化蚀变信息,还可以识别局部的矿体露头,应用效果较好,值得推广。 展开更多
关键词 WorldView-2图像 西昆仑成矿带 遥感地质调查 波谱反演 矿化信息提取
下载PDF
基于Worldview-2八波段影像改进指数的湿地类型分类研究 被引量:4
19
作者 凌成星 鞠洪波 +1 位作者 张怀清 孙华 《林业科学研究》 CSCD 北大核心 2014年第5期639-643,共5页
采用Worldview-2八波段影像作为数据源,选取东洞庭湖湿地核心区域作为研究区,进行了Worldview-2八波段特征分析、构建改进遥感指数、采用改进遥感指数阈值分层分类的策略对湿地区域进行信息提取。研究结果表明,基于Worldview-2八波段影... 采用Worldview-2八波段影像作为数据源,选取东洞庭湖湿地核心区域作为研究区,进行了Worldview-2八波段特征分析、构建改进遥感指数、采用改进遥感指数阈值分层分类的策略对湿地区域进行信息提取。研究结果表明,基于Worldview-2八波段影像改进指数的湿地类型分类总精度达到了92.24%,Kappa系数为0.902,比原始遥感指数的分类精度提高了8.18%,特别是对草滩地和泥滩地的区分有了较大的提高,是有效、准确提取湿地类型的技术方法。 展开更多
关键词 湿地 Worldview-2影像 遥感信息提取 改进遥感指数
下载PDF
采用国产GF-2遥感影像的复杂水网平原水体信息提取 被引量:12
20
作者 付勇勇 王旭航 +4 位作者 邓劲松 叶自然 周梦梦 尤淑撑 关涛 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第12期2474-2480,共7页
以国产高分二号(GF-2)影像为数据源,选取杭嘉湖水网平原作为典型研究区域,基于面向对象分析技术,提出一种选取最佳分割尺度和特征规则的方法.该方法通过局部方差变化率(ROC-LV)曲线峰值确定最佳分割尺度,采用分离阈值法(SEaTH)建立提取... 以国产高分二号(GF-2)影像为数据源,选取杭嘉湖水网平原作为典型研究区域,基于面向对象分析技术,提出一种选取最佳分割尺度和特征规则的方法.该方法通过局部方差变化率(ROC-LV)曲线峰值确定最佳分割尺度,采用分离阈值法(SEaTH)建立提取规则,实现水体信息的快速提取.结果表明:总体精度达到98.7%,Kappa系数达到0.96,水体信息提取准确度和查全率均值都在97.3%以上.所提方法能够有效地提取水体信息,满足实际应用需求. 展开更多
关键词 水体信息提取 面向对象的图像分析 高分二号卫星 复杂水网平原 分割尺度 特征规则
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部