叶面积指数(leaf area index,LAI)是单位地表面积上总叶面积的一半,是影响光合作用、蒸腾作用和能量平衡等地表过程的关键生物物理变量。鉴于光学遥感数据易受天气的影响,雷达遥感数据易受土壤等的影响,二者在叶面积指数反演方面各有利...叶面积指数(leaf area index,LAI)是单位地表面积上总叶面积的一半,是影响光合作用、蒸腾作用和能量平衡等地表过程的关键生物物理变量。鉴于光学遥感数据易受天气的影响,雷达遥感数据易受土壤等的影响,二者在叶面积指数反演方面各有利弊,提出了一种考虑不同数据反演结果不确定性的融合方法。研究测试了多种机器学习模型在中国张掖地区的玉米农田上估算LAI的性能。结果表明,光学和雷达两种数据分别作为模型输入进行LAI反演时,高斯过程回归(Gaussian process regression,GPR)的表现均为最优。随后,基于Sentinel-1雷达数据和Sentinel-2光学数据,使用GPR模型生成了研究区2019年的两种LAI及不确定性时空分布图。考虑不同数据反演结果的差异,使用加权滤波方法将两种LAI融合,实现了高时空分辨率玉米LAI制图。通过定性和定量分析,融合后的LAI时间序列分布图变化连贯,空间分布均匀,精度相较于融合之前有了明显改善。展开更多
本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光...本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。展开更多
土壤盐渍化是干旱半干旱区土壤资源损害、生境破坏和农业生产损失的重要影响因素,定量反演和监测盐渍化土壤,对防护土地生态安全具有重要意义.文章基于光谱变换筛选盐分特征波段和特征光谱指数,构建实测高光谱和Sentinel-2B影像的岭回...土壤盐渍化是干旱半干旱区土壤资源损害、生境破坏和农业生产损失的重要影响因素,定量反演和监测盐渍化土壤,对防护土地生态安全具有重要意义.文章基于光谱变换筛选盐分特征波段和特征光谱指数,构建实测高光谱和Sentinel-2B影像的岭回归模型和偏最小二乘回归盐分反演模型,并以特征光谱指数为敏感参量进行星‒地光谱匹配,构建匹配后盐分反演模型,实现银川平原土壤盐分定量反演.结果表明,盐分指数3(Salinity index 3,S3)、强度指数1(Intensity index 1,Int1)和强度指数2(Intensity index 2,Int2)能够实现实测高光谱端元到多光谱像元尺度的匹配,有效地提升模型精度;经光谱匹配后构建的偏最小二乘模型精度最高(R2=0.721,RMSE=4.856 g·kg^(−1)).相比单独利用影像建模,其R2提升了0.309,均方根误差(Root Mean Square Error,RMSE)减小了2.085 g·kg^(−1).盐分反演结果与实地采样具有较好一致性,表明特征光谱指数可为不同尺度遥感数据间光谱匹配与联合,实现地表点到空间面尺度盐渍化定量监测,为土壤盐分监测提供理论借鉴和实践参考.展开更多
文摘叶面积指数(leaf area index,LAI)是单位地表面积上总叶面积的一半,是影响光合作用、蒸腾作用和能量平衡等地表过程的关键生物物理变量。鉴于光学遥感数据易受天气的影响,雷达遥感数据易受土壤等的影响,二者在叶面积指数反演方面各有利弊,提出了一种考虑不同数据反演结果不确定性的融合方法。研究测试了多种机器学习模型在中国张掖地区的玉米农田上估算LAI的性能。结果表明,光学和雷达两种数据分别作为模型输入进行LAI反演时,高斯过程回归(Gaussian process regression,GPR)的表现均为最优。随后,基于Sentinel-1雷达数据和Sentinel-2光学数据,使用GPR模型生成了研究区2019年的两种LAI及不确定性时空分布图。考虑不同数据反演结果的差异,使用加权滤波方法将两种LAI融合,实现了高时空分辨率玉米LAI制图。通过定性和定量分析,融合后的LAI时间序列分布图变化连贯,空间分布均匀,精度相较于融合之前有了明显改善。
文摘本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。
文摘土壤盐渍化是干旱半干旱区土壤资源损害、生境破坏和农业生产损失的重要影响因素,定量反演和监测盐渍化土壤,对防护土地生态安全具有重要意义.文章基于光谱变换筛选盐分特征波段和特征光谱指数,构建实测高光谱和Sentinel-2B影像的岭回归模型和偏最小二乘回归盐分反演模型,并以特征光谱指数为敏感参量进行星‒地光谱匹配,构建匹配后盐分反演模型,实现银川平原土壤盐分定量反演.结果表明,盐分指数3(Salinity index 3,S3)、强度指数1(Intensity index 1,Int1)和强度指数2(Intensity index 2,Int2)能够实现实测高光谱端元到多光谱像元尺度的匹配,有效地提升模型精度;经光谱匹配后构建的偏最小二乘模型精度最高(R2=0.721,RMSE=4.856 g·kg^(−1)).相比单独利用影像建模,其R2提升了0.309,均方根误差(Root Mean Square Error,RMSE)减小了2.085 g·kg^(−1).盐分反演结果与实地采样具有较好一致性,表明特征光谱指数可为不同尺度遥感数据间光谱匹配与联合,实现地表点到空间面尺度盐渍化定量监测,为土壤盐分监测提供理论借鉴和实践参考.