CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcinat...CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcination in Natmosphere. The samples were characterized by various means such as nitrogen adsorption/desorption, X-ray diffraction(XRD), Htemperature-programmed reduction(H-TPR),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). Results showed that the modified catalyst had the mesoporous structure, comparatively higher amount of surface oxygen and larger oxygen vacancies than others. As a result of the structure and surface composition merits, a high methane combustion conversion(50%) could be obtained at a low temperature of 262 °C for the modified CoO/CeOcomposites catalysts. The experimental results demonstrated that ultrasonic impregnation treatment combined with the Nthermal treatment prior to calcination in air had a promising application for preparation of CoO/CeOcomposites catalysts for low-temperature catalytic combustion of methane.展开更多
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(...The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface...High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C.展开更多
Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and...Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and energy applications.Recently,the construction of a step-scheme heterostructure system(hereafter called the S-scheme)has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability.Herein,a novel S-scheme heterojunction system consisting of 2D O-doped g-C_(3)N_(4)(OCN)nanosheets and 3D N-doped Nb_(2)O_(5)/C(N-NBO/C)nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B(RhB).Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination.The enhanced performance could be attributed to the following factors:fast charge transfer,highly-efficient charge separation,extended lifetime of photoinduced charge carriers,and the high redox capability of the photoinduced charges in the S-scheme system.Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path,meanwhile,the RhB mineralization degradation pathway was also investigated using LC-MS.This study presents an approach to constructing Nb_(2)O_(5)-based S-scheme heterojunctions for photocatalytic applications.展开更多
Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of t...Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation.展开更多
Membrane technology features inspiring excellence from numerous separation technologies for CO_(2) capture from post-combustion gas.Polyvinylamine(PVAm)-based facilitated transport membranes show significantly high se...Membrane technology features inspiring excellence from numerous separation technologies for CO_(2) capture from post-combustion gas.Polyvinylamine(PVAm)-based facilitated transport membranes show significantly high separation performance,which has been proven promising for industrial scale-up.However,commercialized PVAm with low molecular weight and excessive crystallinity is not available to prepare high-performance membranes.Herein,the synthesis process of PVAm was optimized by regulating polymerization and acidic hydrolytic conditions.The membranes based on PVAm with a molecular weight of 154 kDa and crystallinity of 11.37%display high CO_(2) permeance of 726 GPU and CO_(2)/N_(2) selectivity of 55 at a feed gas pressure of 0.50 MPa.Furthermore,we established a PVAm synthesis reactor with an annual PVAm solution(1%(mass))capacity of over 7000 kg and realized the scaled-up manufacture of both PVAm and composite membranes.展开更多
P2-Na_(0.67)N_(i0.33)Mn_(0.67)O_(2)is considered as a promising cathode material for sodium-ion battery (SIBs)because of its high capacity and discharge potential.However,its practical use is limited by Na^(+)/vacancy...P2-Na_(0.67)N_(i0.33)Mn_(0.67)O_(2)is considered as a promising cathode material for sodium-ion battery (SIBs)because of its high capacity and discharge potential.However,its practical use is limited by Na^(+)/vacancy ordering and P2-O2 phase transition.Herein,a Ti^(4+)/F^(-) co-doping strategy is developed to address these issues.The optimal P2-Na_(0.67)Ni_(0.33)Mn_(0.37)Ti_(0.3)O_(1.9)F_(0.1) exhibits much enhanced sodium storage performance in the high voltage range of 2.0–4.4 V,including a cycling stability of 77.2%over 300cycles at a rate of 2 C and a high-rate capability of 87.7 m Ah g^(-1) at 6 C.Moreover,the P2-Na_(0.67)Ni_(0.33)Mn_(0.37)Ti_(0.3)O_(1.9)F_(0.1) delivers reversible capacities of 82.7 and 128.1 m Ah g^(-1) at-10 and 50℃ at a rate of 2 C,respectively.The capacity retentions over 200 cycles at-10℃ is 94.2%,implying more opportunity for practical application.In-situ X-ray diffraction analysis reveals that both P2-O2 phase transitions and Na^(+)/vacancy ordering is suppressed by Ti^(4+)/F^(-) co-doping,which resulting in fast Na^(+) diffusion and stable phase structure.The hard carbon//P2-Na_(0.67)Ni_(0.33)Mn_(0.37)Ti_(0.3)O_(1.9)F_(0.1) full cell exhibits a high energy density of 310.2 Wh kg^(-1) and remarkable cyclability with 82.1%retention after 300 cycles at 1 C in the voltage range of 1.5–4.2 V.These results demonstrate that the co-doping Ti^(4+)/F^(-) is a promising strategy to improve the electrochemical properties of P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2),providing a facile tactic to develop high performance cathode materials for SIBs.展开更多
In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)an...In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)and the Ag_(2)S content were optimized. The best 0.5% Ag_(2)S/KTa_(0.5)Nb_(0.5)O_(3)(KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag_(2)S. Under simulated sunlight, the NH_(3)generation rate of 0.5% Ag_(2)S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0.XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag_(2)S/KTN heterojunction established a type-Ⅱ band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag_(2)S/KTN composite exhibited higher NH3generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.展开更多
C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)and W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were successfully prepared by using SiO_(2)template followed by gradual deposition method.The degradation of phenol solution and p...C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)and W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were successfully prepared by using SiO_(2)template followed by gradual deposition method.The degradation of phenol solution and photolysis ability were tested to characterize its photocatalytic activity.Compared with the single-shelled C_(3)N_(4)and C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,double-shelled W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres possessed larger surface area and fast charge separation efficiency,exhibiting about 8.9 times and 4.0 times higher H_(2)evolution than those of C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,respectively.The photocatalytic mechanism of the W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were carefully investigated according to the results of morphology design and photoelectric performance.A Z scheme mechanism based on the construction of heterojunctions was proposed to explain the improvement of photocatalytic performance.This new charge transfer mechanism appears to greatly inhibit the recombination of electrons/holes during the charge transfer process,while maintaining its strong hydrogen reduction ability,resulting in a higher photocatalytic performance.展开更多
A typical Z-scheme system is composed of two photocatalysts which generate two sets of charge carriers and split water into H2 and O2 at different locations.Scientists are struggling to enhance the efficiencies of the...A typical Z-scheme system is composed of two photocatalysts which generate two sets of charge carriers and split water into H2 and O2 at different locations.Scientists are struggling to enhance the efficiencies of these systems by maximizing their light absorption,engineering more stable redox couples,and discovering new O2 and H2 evolutions co-catalysts.In this work,Au decorated WO3/g-C3N4 Z-scheme nanocomposites are fabricated via wet-chemical and photo-deposition methods.The nanocomposites are utilized in photocatalysis for H2 production and 2,4-dichlorophenol(2,4-DCP)degradation.It is investigated that the optimized 4Au/6%WO3/CN nanocomposite is highly efficient for production of 69.9 and 307.3μmol h−1 g−1 H2 gas,respectively,under visible-light(λ>420 nm)and UV–visible illumination.Further,the fabricated 4Au/6%WO3/CN nanocomposite is significant(i.e.,100%degradation in 2 h)for 2,4-DCP degradation under visible light and highly stable in photocatalysis.A significant 4.17%quantum efficiency is recorded for H2 production at wavelength 420 nm.This enhanced performance is attributed to the improved charge separation and the surface plasmon resonance effect of Au nanoparticles.Solid-state density functional theory simulations are performed to countercheck and validate our experimental data.Positive surface formation energy,high charge transfer,and strong non-bonding interaction via electrostatic forces confirm the stability of 4Au/6%WO3/CN interface.展开更多
光电化学(PEC)分解水是一种清洁可持续的获取氢燃料的方法,其中产氧半反应(OER)是制约整个水分解过程效率的关键步骤.因此,光阳极的性能是决定太阳能到氢能转化效率的关键因素.在各种水氧化光阳极材料中,赤铁矿(α-Fe_(2)O_(3))因具有...光电化学(PEC)分解水是一种清洁可持续的获取氢燃料的方法,其中产氧半反应(OER)是制约整个水分解过程效率的关键步骤.因此,光阳极的性能是决定太阳能到氢能转化效率的关键因素.在各种水氧化光阳极材料中,赤铁矿(α-Fe_(2)O_(3))因具有良好的化学稳定性、合适的带隙(~2.1 eV)、无毒、储量丰富等优点而成为最有前途的光阳极材料之一.然而,α-Fe_(2)O_(3)丰富的受体表面态和缓慢的水氧化动力学导致光生电荷复合严重,限制了其在光电化学中的实际应用.因此,有必要对α-Fe_(2)O_(3)进行表面工程设计以提高水氧化效率.本文提出了一种新方法,以金属有机框架(Ti-MOFs)为模板,在Ti-Fe_(2)O_(3)表面煅烧合成TiO_(2)层,然后将富活性位点的ZIF-67加载在TiO_(2)/Ti-Fe_(2)O_(3)上作为助催化剂,制备出具有较好光电化学性能的ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极.X射线衍射、高分辨透射电镜、X射线光电子能谱和拉曼光谱等表征结果证实成功合成了ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3).同时,氮气等温吸附脱附曲线和表面接触角测试结果表明,MOFs衍生的TiO_(2)为介孔材料.采用表面光伏技术、光致发光光谱、飞秒-瞬态吸收光谱和电化学阻抗谱分析,研究了光生电荷的分离和复合行为.结果表明,MOFs衍生的TiO_(2)不仅可以作为钝化层有效抑制了表面复合,还作为Ti-Fe_(2)O_(3)的电子阻挡层,显著减少了电子向表面的流失,从而大大提高了Ti-Fe_(2)O_(3)表面和体相的电荷分离效率.进一步的累积电荷量测试、电化学阻抗谱和Bode图分析显示,负载MOFs衍生TiO_(2)后,可以明显促进光生空穴向电解质的注入,其多孔结构也可以增加反应接触面积,这有利于光生电荷在固液界面传输.此外,理论计算结果表明,Ti-Fe_(2)O_(3)水氧化速控步骤的能垒(ΔG=3.38 eV)明显高于TiO_(2)(ΔG=1.67 eV),说明OER更容易在TiO_(2)/Ti-Fe_(2)O_(3)表面发生,这与其光电流密度结果一致.为进一步提高反应活性和加快水氧化动力学,负载助催化剂ZIF-67后,ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极实现了较好的光电化学性能,其在1.23 V vs.RHE时光电流密度高达4.04 mA cm^(‒2),是Ti-Fe_(2)O_(3)的9.3倍,并且复合光阳极的入射光子电流转换效率和空穴注入效率分别达到93%(390 nm)和91%.综上所述,本研究通过MOFs衍生的TiO_(2)和ZIF-67助催化剂改性α-Fe_(2)O_(3)光阳极,显著提升了其光电化学水氧化性能.其中,MOFs衍生TiO_(2)不仅优化了电荷分离,还促进了光生空穴的注入,从而显著提高其光电化学水氧化性能.本研究为构筑高性能的有机-无机杂化光阳极提供了新思路.展开更多
文摘CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcination in Natmosphere. The samples were characterized by various means such as nitrogen adsorption/desorption, X-ray diffraction(XRD), Htemperature-programmed reduction(H-TPR),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). Results showed that the modified catalyst had the mesoporous structure, comparatively higher amount of surface oxygen and larger oxygen vacancies than others. As a result of the structure and surface composition merits, a high methane combustion conversion(50%) could be obtained at a low temperature of 262 °C for the modified CoO/CeOcomposites catalysts. The experimental results demonstrated that ultrasonic impregnation treatment combined with the Nthermal treatment prior to calcination in air had a promising application for preparation of CoO/CeOcomposites catalysts for low-temperature catalytic combustion of methane.
文摘The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
基金supported by the National Key R&D Program of China(Grant No.2023YFB2503900)the National Natural Science Foundation of China(Grant No.52372203)+1 种基金the National Natural Science Foundation of China(Grant No.52202259)the Shandong Province Natural Science Foundation(ZR2022QE093).
文摘High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C.
文摘Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and energy applications.Recently,the construction of a step-scheme heterostructure system(hereafter called the S-scheme)has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability.Herein,a novel S-scheme heterojunction system consisting of 2D O-doped g-C_(3)N_(4)(OCN)nanosheets and 3D N-doped Nb_(2)O_(5)/C(N-NBO/C)nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B(RhB).Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination.The enhanced performance could be attributed to the following factors:fast charge transfer,highly-efficient charge separation,extended lifetime of photoinduced charge carriers,and the high redox capability of the photoinduced charges in the S-scheme system.Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path,meanwhile,the RhB mineralization degradation pathway was also investigated using LC-MS.This study presents an approach to constructing Nb_(2)O_(5)-based S-scheme heterojunctions for photocatalytic applications.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59833120).
文摘Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation.
基金supported by the National Key Research and Development Program of China(2021YFB3801200)the National Natural Science Foundation of China(21938007)the Natural Science Foundation of Hebei Province(E2020402036)。
文摘Membrane technology features inspiring excellence from numerous separation technologies for CO_(2) capture from post-combustion gas.Polyvinylamine(PVAm)-based facilitated transport membranes show significantly high separation performance,which has been proven promising for industrial scale-up.However,commercialized PVAm with low molecular weight and excessive crystallinity is not available to prepare high-performance membranes.Herein,the synthesis process of PVAm was optimized by regulating polymerization and acidic hydrolytic conditions.The membranes based on PVAm with a molecular weight of 154 kDa and crystallinity of 11.37%display high CO_(2) permeance of 726 GPU and CO_(2)/N_(2) selectivity of 55 at a feed gas pressure of 0.50 MPa.Furthermore,we established a PVAm synthesis reactor with an annual PVAm solution(1%(mass))capacity of over 7000 kg and realized the scaled-up manufacture of both PVAm and composite membranes.
基金supported by the National Natural Science Foundation of China(21901146,51907110,22078179)the Key Research and Development Program of Shandong Province(2019GGX103027)+2 种基金the Natural Science Foundation of Shandong Province(ZR2019MB034)the Taishan Scholar Foundation(tsqn201812063)the 111 Project(B12015)。
文摘P2-Na_(0.67)N_(i0.33)Mn_(0.67)O_(2)is considered as a promising cathode material for sodium-ion battery (SIBs)because of its high capacity and discharge potential.However,its practical use is limited by Na^(+)/vacancy ordering and P2-O2 phase transition.Herein,a Ti^(4+)/F^(-) co-doping strategy is developed to address these issues.The optimal P2-Na_(0.67)Ni_(0.33)Mn_(0.37)Ti_(0.3)O_(1.9)F_(0.1) exhibits much enhanced sodium storage performance in the high voltage range of 2.0–4.4 V,including a cycling stability of 77.2%over 300cycles at a rate of 2 C and a high-rate capability of 87.7 m Ah g^(-1) at 6 C.Moreover,the P2-Na_(0.67)Ni_(0.33)Mn_(0.37)Ti_(0.3)O_(1.9)F_(0.1) delivers reversible capacities of 82.7 and 128.1 m Ah g^(-1) at-10 and 50℃ at a rate of 2 C,respectively.The capacity retentions over 200 cycles at-10℃ is 94.2%,implying more opportunity for practical application.In-situ X-ray diffraction analysis reveals that both P2-O2 phase transitions and Na^(+)/vacancy ordering is suppressed by Ti^(4+)/F^(-) co-doping,which resulting in fast Na^(+) diffusion and stable phase structure.The hard carbon//P2-Na_(0.67)Ni_(0.33)Mn_(0.37)Ti_(0.3)O_(1.9)F_(0.1) full cell exhibits a high energy density of 310.2 Wh kg^(-1) and remarkable cyclability with 82.1%retention after 300 cycles at 1 C in the voltage range of 1.5–4.2 V.These results demonstrate that the co-doping Ti^(4+)/F^(-) is a promising strategy to improve the electrochemical properties of P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2),providing a facile tactic to develop high performance cathode materials for SIBs.
基金financially supported by National Natural Science Foundation of China (Grant No. 22172144)Nature Science Foundation of Zhejiang Province (Grant No. LY20B030004)。
文摘In this work, a novel heterojunction composite Ag_(2)S/KTa_(x)Nb_(1-x)O_(3)was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTa_(x)Nb_(1-x)O_(3)and the Ag_(2)S content were optimized. The best 0.5% Ag_(2)S/KTa_(0.5)Nb_(0.5)O_(3)(KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag_(2)S. Under simulated sunlight, the NH_(3)generation rate of 0.5% Ag_(2)S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0.XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag_(2)S/KTN heterojunction established a type-Ⅱ band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag_(2)S/KTN composite exhibited higher NH3generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.
基金Supported by the National Natural Science Foundation of China(Nos.91963207 and 12075174)。
文摘C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)and W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were successfully prepared by using SiO_(2)template followed by gradual deposition method.The degradation of phenol solution and photolysis ability were tested to characterize its photocatalytic activity.Compared with the single-shelled C_(3)N_(4)and C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,double-shelled W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres possessed larger surface area and fast charge separation efficiency,exhibiting about 8.9 times and 4.0 times higher H_(2)evolution than those of C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,respectively.The photocatalytic mechanism of the W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were carefully investigated according to the results of morphology design and photoelectric performance.A Z scheme mechanism based on the construction of heterojunctions was proposed to explain the improvement of photocatalytic performance.This new charge transfer mechanism appears to greatly inhibit the recombination of electrons/holes during the charge transfer process,while maintaining its strong hydrogen reduction ability,resulting in a higher photocatalytic performance.
基金the National Natural Science Foundation of China (Nos. 11874169, 11574106, 61771448, and 51635007)the Double first-class research funding of China-EU Institute for Clean and Renewable Energy (ICARE-RP-2018-SOLAR-003)+1 种基金the Engineering and Physical Science Research Council, UK (EPSRC grant No EP/ P510956/1 and EP/R512801/1the China Postdoctoral Science Foundation under Grant No. 2017M622404
文摘A typical Z-scheme system is composed of two photocatalysts which generate two sets of charge carriers and split water into H2 and O2 at different locations.Scientists are struggling to enhance the efficiencies of these systems by maximizing their light absorption,engineering more stable redox couples,and discovering new O2 and H2 evolutions co-catalysts.In this work,Au decorated WO3/g-C3N4 Z-scheme nanocomposites are fabricated via wet-chemical and photo-deposition methods.The nanocomposites are utilized in photocatalysis for H2 production and 2,4-dichlorophenol(2,4-DCP)degradation.It is investigated that the optimized 4Au/6%WO3/CN nanocomposite is highly efficient for production of 69.9 and 307.3μmol h−1 g−1 H2 gas,respectively,under visible-light(λ>420 nm)and UV–visible illumination.Further,the fabricated 4Au/6%WO3/CN nanocomposite is significant(i.e.,100%degradation in 2 h)for 2,4-DCP degradation under visible light and highly stable in photocatalysis.A significant 4.17%quantum efficiency is recorded for H2 production at wavelength 420 nm.This enhanced performance is attributed to the improved charge separation and the surface plasmon resonance effect of Au nanoparticles.Solid-state density functional theory simulations are performed to countercheck and validate our experimental data.Positive surface formation energy,high charge transfer,and strong non-bonding interaction via electrostatic forces confirm the stability of 4Au/6%WO3/CN interface.
文摘光电化学(PEC)分解水是一种清洁可持续的获取氢燃料的方法,其中产氧半反应(OER)是制约整个水分解过程效率的关键步骤.因此,光阳极的性能是决定太阳能到氢能转化效率的关键因素.在各种水氧化光阳极材料中,赤铁矿(α-Fe_(2)O_(3))因具有良好的化学稳定性、合适的带隙(~2.1 eV)、无毒、储量丰富等优点而成为最有前途的光阳极材料之一.然而,α-Fe_(2)O_(3)丰富的受体表面态和缓慢的水氧化动力学导致光生电荷复合严重,限制了其在光电化学中的实际应用.因此,有必要对α-Fe_(2)O_(3)进行表面工程设计以提高水氧化效率.本文提出了一种新方法,以金属有机框架(Ti-MOFs)为模板,在Ti-Fe_(2)O_(3)表面煅烧合成TiO_(2)层,然后将富活性位点的ZIF-67加载在TiO_(2)/Ti-Fe_(2)O_(3)上作为助催化剂,制备出具有较好光电化学性能的ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极.X射线衍射、高分辨透射电镜、X射线光电子能谱和拉曼光谱等表征结果证实成功合成了ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3).同时,氮气等温吸附脱附曲线和表面接触角测试结果表明,MOFs衍生的TiO_(2)为介孔材料.采用表面光伏技术、光致发光光谱、飞秒-瞬态吸收光谱和电化学阻抗谱分析,研究了光生电荷的分离和复合行为.结果表明,MOFs衍生的TiO_(2)不仅可以作为钝化层有效抑制了表面复合,还作为Ti-Fe_(2)O_(3)的电子阻挡层,显著减少了电子向表面的流失,从而大大提高了Ti-Fe_(2)O_(3)表面和体相的电荷分离效率.进一步的累积电荷量测试、电化学阻抗谱和Bode图分析显示,负载MOFs衍生TiO_(2)后,可以明显促进光生空穴向电解质的注入,其多孔结构也可以增加反应接触面积,这有利于光生电荷在固液界面传输.此外,理论计算结果表明,Ti-Fe_(2)O_(3)水氧化速控步骤的能垒(ΔG=3.38 eV)明显高于TiO_(2)(ΔG=1.67 eV),说明OER更容易在TiO_(2)/Ti-Fe_(2)O_(3)表面发生,这与其光电流密度结果一致.为进一步提高反应活性和加快水氧化动力学,负载助催化剂ZIF-67后,ZIF-67/TiO_(2)/Ti-Fe_(2)O_(3)复合光阳极实现了较好的光电化学性能,其在1.23 V vs.RHE时光电流密度高达4.04 mA cm^(‒2),是Ti-Fe_(2)O_(3)的9.3倍,并且复合光阳极的入射光子电流转换效率和空穴注入效率分别达到93%(390 nm)和91%.综上所述,本研究通过MOFs衍生的TiO_(2)和ZIF-67助催化剂改性α-Fe_(2)O_(3)光阳极,显著提升了其光电化学水氧化性能.其中,MOFs衍生TiO_(2)不仅优化了电荷分离,还促进了光生空穴的注入,从而显著提高其光电化学水氧化性能.本研究为构筑高性能的有机-无机杂化光阳极提供了新思路.