The Mg2+/Li+/Cl solutions were filtrated with a commercially available DK nanofiltration membrane to investigate the possibility to enrich the lithium component.The investigation was significant as such an approach mi...The Mg2+/Li+/Cl solutions were filtrated with a commercially available DK nanofiltration membrane to investigate the possibility to enrich the lithium component.The investigation was significant as such an approach might be a competing substitute for the present lithium purification industry and the environmental protection purpose.The Donnan steric pore model(DSPM) was implemented for the prediction.The separation of Mg2+/Li+was mainly affected by the working pressure(or the permeation flux) and a limiting separation factor was found around 0.31.The effective membrane charge density was evaluated and its dependence on the permeation flux as well as the ion pattern was discussed.For predicting an actual separation of electrolytes,the experimental investigation seems necessary for the reliability and efficiency.展开更多
Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation ch...Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation characteristics of methane recovered from mine gas based on hydrate method.The partition coefficient,separation factor and recovery rate were used to evaluate the effects of MMT,and the selection factor was primarily proposed to define the selectivity of mine gas hydrate in the relative target gases.The experimental results indicate that MMT could improve the following factors including hydration separation factor,the selection factor,the partition coefficient,and the recovery rate.Furthermore,the effect of SDS on the function of MMT is analyzed in the process of hydration separation.Finally,due to the results of the experiment,it is concluded that MMT hydration mechanism explores the effect of MMT enrichment methane from mine gas.展开更多
The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of...The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of the gas permeabilities coefficient of PANI with an insulator to metal transition upon the protonation processes was observed, which might be due to a change in both gas solubility coefficient and diffusion coefficient with the protonation state.展开更多
Ambient Assisted Living(AAL) is becoming an important research field. Many technologies have emerged related with pervasive computing vision, which can give support for AAL. One of the most reliable approaches is base...Ambient Assisted Living(AAL) is becoming an important research field. Many technologies have emerged related with pervasive computing vision, which can give support for AAL. One of the most reliable approaches is based on wireless sensor networks(WSNs). In this paper, we propose a coverage-aware unequal clustering protocol with load separation(CUCPLS) for data gathering of AAL applications based on WSNs. Firstly, the coverage overlap factor for nodes is introduced that accounts for the degree of target nodes covered. In addition, to balance the intra-cluster and inter-cluster energy consumptions, different competition radiuses of CHs are computed theoretically in different rings, and smaller clusters are formed near the sink. Moreover, two CHs are selected in each cluster for load separation to alleviate the substantial energy consumption difference between a single CH and its member nodes. Furthermore, a backoff waiting time is adopted during the selection of the two CHs to reduce the number of control messages employed. Simulation results demonstrate that the CUCPLS not only can achieve better coverage performance, but also balance the energy consumption of a network and prolong network lifetime.展开更多
In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust...In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique(SUMT) interior point method of Nonlinear Programming(NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.展开更多
A novel alkoxycarbonyl thiourea resin(ATR)was synthesized by monomer polymerization of oxydiethane-2,1-diyl dicarbonisothiocyanatidate and polyethylene polyamine,and characterized by FT-IR.The adsorption properties of...A novel alkoxycarbonyl thiourea resin(ATR)was synthesized by monomer polymerization of oxydiethane-2,1-diyl dicarbonisothiocyanatidate and polyethylene polyamine,and characterized by FT-IR.The adsorption properties of ATR were investigated by batch test.The adsorption capacities for Au(Ⅲ),Ag(Ⅰ),Cu(Ⅱ),Zn(Ⅱ),Fe(Ⅲ),Ca(Ⅱ)and Mg(Ⅱ)are 4.65,4.40,0.40,0.90,0.86,0.0080 and 0.016 mmol/g,respectively,when the adsorption condition is as follows:contact time 24 h,temperature 30℃,initial concentration of Au(Ⅲ)5.08 mmol/L and that of other metals 0.10 mol/L,and concentration of acid 1.0 mol/L.The adsorption capacity for Au(Ⅲ)increases with the increase of contact time,temperature and initial concentration of Au(Ⅲ).The capacity after five adsorption-desorption cycles remains 90%that of the first time,and the separation factors of ATR for binary metal ion solutions are larger than 995,indicating that ATR is of good regeneration property and selectivity.XPS results show that the functional atoms of ATR supply electrons for Au and coordinate with Au during the adsorption.展开更多
Distribution behavior of ketoprofen enantiomers was examined in methanol aqueous and organic solvent mixture containing tartaric esters. The influence of length of alkyl chain of tartaric esters, concentration of L-ta...Distribution behavior of ketoprofen enantiomers was examined in methanol aqueous and organic solvent mixture containing tartaric esters. The influence of length of alkyl chain of tartaric esters, concentration of L-tartaric esters and methanol aqueous, kind of organic solvent on partition ratio and separation factors was investigated. The results show that L-tartaric and D-tartaric esters have different chiral recognition abilities. S-ketoprofen is easily extracted by L-tartaric esters, and R-ketoprofen is easily extracted by D-tartaric esters. L-tartaric esters form more stable diastereomeric complexes with S-enantiomer than that with R-enantiomer. This distribution behavior is consistent with chiral recognition mechanism. With the increase of the concentration of tartaric ester from 0 to 0.3 mol/L, partition coefficient K and separation factor a increase. Also, the kind of organic solvent and the concentration of the methanol aqueous have significant influence on K and a.展开更多
A vacuum membrane distillation(VMD)process with permeate fractional condensation on membrane downstream has been developed for simultaneous recovery of phosphorus and nitrogen from liquid digestate.The polytetrafluoro...A vacuum membrane distillation(VMD)process with permeate fractional condensation on membrane downstream has been developed for simultaneous recovery of phosphorus and nitrogen from liquid digestate.The polytetrafluoroethylene(PTFE)membrane flux could reach 6000 g·m-2·h-1 with the rejection efficiency of total phosphorus(TP)over 0.99,under the condition of flowrate being 120 L·h-1 and temperature being 40°C.Membrane fouling occurred with a film of organics and microorganism deposited on the surface of the membrane.Membrane flux could be reversed after the membrane was rinsed by water.Higher feed temperature and flowrate could improve the membrane flux,while hardly affect the rejection efficiency of total phosphorus.The concentration of TP could reach 1600 mg·L-1 after membrane distillation,which is about 5 times of that in initial liquid digestate.On the downstream of the membrane,some of the permeate vapor was condensed under the vacuum condition and most of water was collected here.The remaining vapor enriched with total nitrogen(TN)was compressed and pumped to the atmospheric condition to condense.The TN concentration in atmospheric condensate was as high as 7000 mg·L-1 with the process separation factor for ammonia being enhanced to 114.展开更多
In the paper we introduce the notions of the separation factor ~ and give a representive of metric projection on an n-codimension subspace (or an affine set) under certain conditions in Banach space. Further, we obt...In the paper we introduce the notions of the separation factor ~ and give a representive of metric projection on an n-codimension subspace (or an affine set) under certain conditions in Banach space. Further, we obtain the distance formula from any point x to a finite n-codimension subspace. Results extend and improve the corresponding results in Hilbert space.展开更多
The impacts of emissions from industry,power plant,transportation,residential,and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of ...The impacts of emissions from industry,power plant,transportation,residential,and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of 2007 were examined in a modeling study.The modeling system consisted of the Weather Research and Forecasting (WRF) model and the photochemical dispersion model,CAMx.The factor separation technique (FST) was used to quantify the effect of individual emission source types and the synergistic interactions among two or more types.Additionally,the effectiveness of emission reduction scenarios was explored.The industry,power plant,and transportation emission source types were found to be the most important in terms of their individual effects on O3DM.The key contributor to high surface O3 was power plant emissions,with a peak individual effect of 40 ppbv in the southwestern BTH area.The individual effect from the biogenic emission category was quite low.The synergistic effects from the combinations of each pair of anthropogenic emission types suppressed O3 formation,while the synergistic effects for combinations of three were favorable for O3 formation when the industrial and power plant emission source types coexisted.The quadruple synergistic effects were positive only with the combination of power plant,transportation,residential,and biogenic sources,while the quintuple synergistic effect showed only minor impacts on O3DM concentrations.A 30% reduction in industrial and transportation sources produced the most effective impacts on O3 concentrations,with a maximum decrease of 20 ppbv.These results suggested that the synergistic impacts among emission source types should be considered when formulating emission control strategies for O3 reduction.展开更多
Electrolysis of water is widely used for hydrogen isotope separation and the development of hydrogen evolution reaction(HER)catalysts with high selectivity and activity is of key importance.Herein,we propose single at...Electrolysis of water is widely used for hydrogen isotope separation and the development of hydrogen evolution reaction(HER)catalysts with high selectivity and activity is of key importance.Herein,we propose single atom catalysts(SACs)as promising catalysts for efficient hydrogen isotope separation.Pt SACs and Pt nanoparticles(NPs)have been fabricated on nanoarray-structured nitrogen-doped graphite foil(NGF)substrate by a polyol reduction method.The as prepared Pt1/NGF electrode exhibits high activity and selectivity toward HER with a low overpotential of 0.022 V at 10 mA·cm^(-2) and a high separation factor of 6.83 for hydrogen and deuterium separation,much better than Pt NPs counterpart.Density functional theory(DFT)calculations ascribe the high activity and selectivity to the constructed Pt-N_(2)C_(2) structure.This work develops a new opportunity for the design and application of high-efficiency and stable SACs toward hydrogen isotope separation by electrolysis of water.展开更多
Solid-liquid extraction of gadolinium was investigated from phosphoric acid medium using commercial amino phosphonic acid resin, Tulsion CH-93. The experimental conditions studied included equilibration time, acid con...Solid-liquid extraction of gadolinium was investigated from phosphoric acid medium using commercial amino phosphonic acid resin, Tulsion CH-93. The experimental conditions studied included equilibration time, acid concentration, mass of the resin, metal concentration, loading and elution. The percent extraction of Gd(Ⅲ) was studied as a function of phosphoric acid (0.05-3 mol/L) using Tulsion CH-93 resin. The corresponding lgD vs. equilibrium pH plot gave straight line with a slope of 1.8. The percent extraction decreased with acid co centration increasing, conforming ion exchange mechanism. Under observed experimental conditions the loading capacity of Tulsion CH-93 for gadolinium was 10.6 mg/g. Among several eluants screened, the quantitative elution of Gd(III) from loaded Tulsion CH-93 was obtained with ammonium oxalate (0.15 mol/L). The extraction behavior of commonly associated metals with gadolinium was studied as a function of phosphoric acid concentration. Tulsion CH-93 resin showed selective extraction towards heavy rare earths (Lu and Yb) which could be separated from other rare earths at 3 mol/L H3PO4, similar to wet phosphoric acid (3-5 mol/L). On the other hand Gd(Ⅲ) and other rare earths were studied with chelating resin Tulsion CH-90. Light rare earths were highly extracted and these could be separated from heavy rare earths and Gd.展开更多
In order to clarify the solvent extraction and separation behaviors of rare earths and impurity of Al during the extraction and enrichment of low-concentration leach solution of ion-adsorption rare earth ore,the extra...In order to clarify the solvent extraction and separation behaviors of rare earths and impurity of Al during the extraction and enrichment of low-concentration leach solution of ion-adsorption rare earth ore,the extraction mechanism and separation behaviors of Nd^(3+)and Al^(3+)in the Nd_(2)(SO_(4))_(3)-AI_(2)(SO_(4))_(3) mixed solution using P507 were studied in this work.The extraction of Nd^(3+)and Al^(3+)follows the cation exchange mechanism.With the increase of the equilibrium pH,β_(Nd/Al) in the extraction of the Nd_(2)(SO_(4))_(3)-Al_(2)(SO_(4))_(3) mixed solution using P507 is always higher than that in the extraction of single Nd_(2)(SO_(4))_(3) and Al_(2)(SO_(4))_(3) solutions.It can be attributed to the fact that the extraction of Nd^(3+)using P507 is much faster than that of Al^(3+),and Al^(3+)is more prone to be hydrolyzed at lower pH.β_(Nd/Al) in the extraction of the Nd_(2)(SO_(4))_(3)-Al_(2)(SO_(4))_(3) mixed solution decreases gradually with the increase of mixing time within the equilibrium pH range of 1.5-1.9.The extraction of Nd^(3+)using P507 is much faster than that of Al^(3+),but the stability of Al^(3+)-Ioaded organic phase is better than that of Nd^(3+)-loaded organic phase,thus Nd^(3+)in the Nd^(3+)-loaded organic phase is gradually replaced by Al^(3+)in the aqueous phase with the increase of mixing time.展开更多
The massive reductions in anthropogenic emissions resulting from the COVID-19 lockdown provided a unique opportunity to evaluate the effect of mitigation measures aiming to abate air pollution.In Mexico,the total lock...The massive reductions in anthropogenic emissions resulting from the COVID-19 lockdown provided a unique opportunity to evaluate the effect of mitigation measures aiming to abate air pollution.In Mexico,the total lockdown period took place during the dry-hot season when biomass burning activity is enhanced.Here,we investigate the role of biomass burning emissions on regional ozone levels in the Megalopolis of Central Mexico.The studied period covers the lockdown phases 2 and 3,and the first month of the New Normal.We applied a factor separation technique and process analysis to estimate the pure and synergistic contributions of emission reductions under lockdown and that from biomass burning to daily ozone maximum concentrations in 7 metropolitan areas of different states in the Megalopolis.The results revealed that biomass burning plumes likely masked the effect of massive reductions from mobile emissions,impacted the PBL development during phase 3 and favored transition and mixed NO_(x)-limited and VOC-limited regional regimes.This contributed to increased ozone production in the middle to lower PBL by changing the regional background levels which potentially could bias high ozone production efficiency estimations.Given the Megalopolis contribution to economic and societal development at national scale,our study suggests that ozone mitigation measures during the dry-hot season targeting mainly mobile emissions will likely be offset by biomass burning plumes.A regional and synergic policy aiming to control biomass burning would help to reduce the occurrence of high ozone levels in Central Mexico with the co-benefit of tackling short-lived climate pollutants.展开更多
The separation coefficient of Nd/Pr was lower in D2EHPA-HCl system. Pointing to this problem,the effect of the acidity of feed and the concentration of lactic acid on the distribution ratio,separation coefficient and ...The separation coefficient of Nd/Pr was lower in D2EHPA-HCl system. Pointing to this problem,the effect of the acidity of feed and the concentration of lactic acid on the distribution ratio,separation coefficient and extraction capacity was investigated in unsaponified D2EHPA-HCl-LA system,and the regression equations were calculated in this paper. The results showed that the distribution ratio and separation coefficient both increased with decreasing of feed acidity and increasing of the lactic acid concentration,and the extraction capacity increased with increasing of lactic acid concentration in D2EHPA-HCl-LA system. When the pH value of the feed was 3.5 and lactic acid concentration was 0.6 mol/L,the max separation coefficient was 1.57,and the extraction capacity was 27.87 g/L.展开更多
To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating...To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating indicator, which was derived from the convergence condition of EASI, and can be used to evaluate the separation degree of separated signals. Furthermore, a nonlinear monotone increasing function between suitable step sizes and separating indicator is constructed to adaptively adjust step sizes, and forgetting factor is employed to weaken effects of data at the initial stage. Numerical case studies and experimental studies on a test bed with shell structures are provided to validate the efficiency improvement of the proposed method. This study can benefit for vibration & acoustic monitoring and control, and machinery condition monitoring and fault diagnosis.展开更多
Extraction of Y(III) and Dy(III) from hydrochloric and nitric acids by Cy-572 in kerosene was studied. The factors affecting the extraction were separately investigated. The stoichiometry of the extracted species was ...Extraction of Y(III) and Dy(III) from hydrochloric and nitric acids by Cy-572 in kerosene was studied. The factors affecting the extraction were separately investigated. The stoichiometry of the extracted species was deduced on the basis of slope analysis method. Evaluation of extraction equilibrium and stripping investigation was studied as well as saponification effect of Cy-572. The composition of the extracted metal species in the organic phase was found to be [MA·(HA)] for Y(III) or Dy(III) in both media.1.0 mol/L HCI is the best stripping agent for each metal ion from the studied acidic media in one step.Saponified Cy-572 does not exhibit any selectivity towards the extraction of Y(III) or Dy(III) from both HCI and HNOsolutions. Based on the obtained results, the data were compared and the separation feasibility between lanthanides and Y(III) in the two media was discussed.展开更多
A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs),biogenic volatile organic com...A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs),biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface O3(O3DM) concentrations in East Asia in summer (June to August 2000).The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China,with a maximum of 60 ppbv,while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China,with a maximum of 25 ppbv.This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1×1) although global emissions of BVOCs are much greater than those of AVOCs.Daily maximum total contributions of BVOCs can approach 20 ppbv in North China,but they can reach 40 ppbv in South China,approaching or exceeding those in some developed countries in Europe and North America.BVOC emissions in such special areas should be considered when O3 control measures are taken.Synergistic contributions among AVOCs,BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China.Thus,the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location.This result suggests that O3 control measures obtained from episodic studies could be limited for long-term applications.展开更多
基金Supported by the National Natural Science Foundation of China (20576052) the Joint Innovation Fund of Jiangsu Province (BY2009107)
文摘The Mg2+/Li+/Cl solutions were filtrated with a commercially available DK nanofiltration membrane to investigate the possibility to enrich the lithium component.The investigation was significant as such an approach might be a competing substitute for the present lithium purification industry and the environmental protection purpose.The Donnan steric pore model(DSPM) was implemented for the prediction.The separation of Mg2+/Li+was mainly affected by the working pressure(or the permeation flux) and a limiting separation factor was found around 0.31.The effective membrane charge density was evaluated and its dependence on the permeation flux as well as the ion pattern was discussed.For predicting an actual separation of electrolytes,the experimental investigation seems necessary for the reliability and efficiency.
基金Projects(51404102,51334005,51274267)supported by the National Natural Science Foundation of ChinaProject(UNPYSCT-2017140)supported by the Youth Innovation Personnel Training in University and College of Heilongjiang Province,China
文摘Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation characteristics of methane recovered from mine gas based on hydrate method.The partition coefficient,separation factor and recovery rate were used to evaluate the effects of MMT,and the selection factor was primarily proposed to define the selectivity of mine gas hydrate in the relative target gases.The experimental results indicate that MMT could improve the following factors including hydration separation factor,the selection factor,the partition coefficient,and the recovery rate.Furthermore,the effect of SDS on the function of MMT is analyzed in the process of hydration separation.Finally,due to the results of the experiment,it is concluded that MMT hydration mechanism explores the effect of MMT enrichment methane from mine gas.
文摘The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of the gas permeabilities coefficient of PANI with an insulator to metal transition upon the protonation processes was observed, which might be due to a change in both gas solubility coefficient and diffusion coefficient with the protonation state.
基金supported by the National Nature Science Foundation of China (61170169, 61170168)
文摘Ambient Assisted Living(AAL) is becoming an important research field. Many technologies have emerged related with pervasive computing vision, which can give support for AAL. One of the most reliable approaches is based on wireless sensor networks(WSNs). In this paper, we propose a coverage-aware unequal clustering protocol with load separation(CUCPLS) for data gathering of AAL applications based on WSNs. Firstly, the coverage overlap factor for nodes is introduced that accounts for the degree of target nodes covered. In addition, to balance the intra-cluster and inter-cluster energy consumptions, different competition radiuses of CHs are computed theoretically in different rings, and smaller clusters are formed near the sink. Moreover, two CHs are selected in each cluster for load separation to alleviate the substantial energy consumption difference between a single CH and its member nodes. Furthermore, a backoff waiting time is adopted during the selection of the two CHs to reduce the number of control messages employed. Simulation results demonstrate that the CUCPLS not only can achieve better coverage performance, but also balance the energy consumption of a network and prolong network lifetime.
基金financially supported by the National Natural Science Foundation of China(Grant No.51009087)
文摘In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique(SUMT) interior point method of Nonlinear Programming(NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.
基金Projects(20476105,50604016)supported by the National Natural Science Foundation of China
文摘A novel alkoxycarbonyl thiourea resin(ATR)was synthesized by monomer polymerization of oxydiethane-2,1-diyl dicarbonisothiocyanatidate and polyethylene polyamine,and characterized by FT-IR.The adsorption properties of ATR were investigated by batch test.The adsorption capacities for Au(Ⅲ),Ag(Ⅰ),Cu(Ⅱ),Zn(Ⅱ),Fe(Ⅲ),Ca(Ⅱ)and Mg(Ⅱ)are 4.65,4.40,0.40,0.90,0.86,0.0080 and 0.016 mmol/g,respectively,when the adsorption condition is as follows:contact time 24 h,temperature 30℃,initial concentration of Au(Ⅲ)5.08 mmol/L and that of other metals 0.10 mol/L,and concentration of acid 1.0 mol/L.The adsorption capacity for Au(Ⅲ)increases with the increase of contact time,temperature and initial concentration of Au(Ⅲ).The capacity after five adsorption-desorption cycles remains 90%that of the first time,and the separation factors of ATR for binary metal ion solutions are larger than 995,indicating that ATR is of good regeneration property and selectivity.XPS results show that the functional atoms of ATR supply electrons for Au and coordinate with Au during the adsorption.
基金Project(20376085) supportecd by the National Natural Science Foundation of China
文摘Distribution behavior of ketoprofen enantiomers was examined in methanol aqueous and organic solvent mixture containing tartaric esters. The influence of length of alkyl chain of tartaric esters, concentration of L-tartaric esters and methanol aqueous, kind of organic solvent on partition ratio and separation factors was investigated. The results show that L-tartaric and D-tartaric esters have different chiral recognition abilities. S-ketoprofen is easily extracted by L-tartaric esters, and R-ketoprofen is easily extracted by D-tartaric esters. L-tartaric esters form more stable diastereomeric complexes with S-enantiomer than that with R-enantiomer. This distribution behavior is consistent with chiral recognition mechanism. With the increase of the concentration of tartaric ester from 0 to 0.3 mol/L, partition coefficient K and separation factor a increase. Also, the kind of organic solvent and the concentration of the methanol aqueous have significant influence on K and a.
基金supported by the Fundamental Research Funds for the Central Universities(No.20822041B4013)Key Laboratory of Development and Application of Rural Renewable Energy,Ministry of Agriculture and Rural Affairs,China(No.18H0491)。
文摘A vacuum membrane distillation(VMD)process with permeate fractional condensation on membrane downstream has been developed for simultaneous recovery of phosphorus and nitrogen from liquid digestate.The polytetrafluoroethylene(PTFE)membrane flux could reach 6000 g·m-2·h-1 with the rejection efficiency of total phosphorus(TP)over 0.99,under the condition of flowrate being 120 L·h-1 and temperature being 40°C.Membrane fouling occurred with a film of organics and microorganism deposited on the surface of the membrane.Membrane flux could be reversed after the membrane was rinsed by water.Higher feed temperature and flowrate could improve the membrane flux,while hardly affect the rejection efficiency of total phosphorus.The concentration of TP could reach 1600 mg·L-1 after membrane distillation,which is about 5 times of that in initial liquid digestate.On the downstream of the membrane,some of the permeate vapor was condensed under the vacuum condition and most of water was collected here.The remaining vapor enriched with total nitrogen(TN)was compressed and pumped to the atmospheric condition to condense.The TN concentration in atmospheric condensate was as high as 7000 mg·L-1 with the process separation factor for ammonia being enhanced to 114.
文摘In the paper we introduce the notions of the separation factor ~ and give a representive of metric projection on an n-codimension subspace (or an affine set) under certain conditions in Banach space. Further, we obtain the distance formula from any point x to a finite n-codimension subspace. Results extend and improve the corresponding results in Hilbert space.
基金jointly supported by a key project of the Chinese Academy of Sciences (Grant No. XDB05030301)the National Natural Science Foundation of China (Grant Nos. 40905055 and 41175105)the special fund of the State Key Joint Laboratory of Environment Simulation and Pollution Control (Grant No. 13K04ESPCP)
文摘The impacts of emissions from industry,power plant,transportation,residential,and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of 2007 were examined in a modeling study.The modeling system consisted of the Weather Research and Forecasting (WRF) model and the photochemical dispersion model,CAMx.The factor separation technique (FST) was used to quantify the effect of individual emission source types and the synergistic interactions among two or more types.Additionally,the effectiveness of emission reduction scenarios was explored.The industry,power plant,and transportation emission source types were found to be the most important in terms of their individual effects on O3DM.The key contributor to high surface O3 was power plant emissions,with a peak individual effect of 40 ppbv in the southwestern BTH area.The individual effect from the biogenic emission category was quite low.The synergistic effects from the combinations of each pair of anthropogenic emission types suppressed O3 formation,while the synergistic effects for combinations of three were favorable for O3 formation when the industrial and power plant emission source types coexisted.The quadruple synergistic effects were positive only with the combination of power plant,transportation,residential,and biogenic sources,while the quintuple synergistic effect showed only minor impacts on O3DM concentrations.A 30% reduction in industrial and transportation sources produced the most effective impacts on O3 concentrations,with a maximum decrease of 20 ppbv.These results suggested that the synergistic impacts among emission source types should be considered when formulating emission control strategies for O3 reduction.
基金This work was financially supported by the National Natural Science Foundation of China(No.22109146)Institute of Materials CAEP(Nos.TP03201703,TP03201802,CX2019018,and WDZC202105).
文摘Electrolysis of water is widely used for hydrogen isotope separation and the development of hydrogen evolution reaction(HER)catalysts with high selectivity and activity is of key importance.Herein,we propose single atom catalysts(SACs)as promising catalysts for efficient hydrogen isotope separation.Pt SACs and Pt nanoparticles(NPs)have been fabricated on nanoarray-structured nitrogen-doped graphite foil(NGF)substrate by a polyol reduction method.The as prepared Pt1/NGF electrode exhibits high activity and selectivity toward HER with a low overpotential of 0.022 V at 10 mA·cm^(-2) and a high separation factor of 6.83 for hydrogen and deuterium separation,much better than Pt NPs counterpart.Density functional theory(DFT)calculations ascribe the high activity and selectivity to the constructed Pt-N_(2)C_(2) structure.This work develops a new opportunity for the design and application of high-efficiency and stable SACs toward hydrogen isotope separation by electrolysis of water.
文摘Solid-liquid extraction of gadolinium was investigated from phosphoric acid medium using commercial amino phosphonic acid resin, Tulsion CH-93. The experimental conditions studied included equilibration time, acid concentration, mass of the resin, metal concentration, loading and elution. The percent extraction of Gd(Ⅲ) was studied as a function of phosphoric acid (0.05-3 mol/L) using Tulsion CH-93 resin. The corresponding lgD vs. equilibrium pH plot gave straight line with a slope of 1.8. The percent extraction decreased with acid co centration increasing, conforming ion exchange mechanism. Under observed experimental conditions the loading capacity of Tulsion CH-93 for gadolinium was 10.6 mg/g. Among several eluants screened, the quantitative elution of Gd(III) from loaded Tulsion CH-93 was obtained with ammonium oxalate (0.15 mol/L). The extraction behavior of commonly associated metals with gadolinium was studied as a function of phosphoric acid concentration. Tulsion CH-93 resin showed selective extraction towards heavy rare earths (Lu and Yb) which could be separated from other rare earths at 3 mol/L H3PO4, similar to wet phosphoric acid (3-5 mol/L). On the other hand Gd(Ⅲ) and other rare earths were studied with chelating resin Tulsion CH-90. Light rare earths were highly extracted and these could be separated from heavy rare earths and Gd.
基金Project supported by the Major Research Plan of the National Natural Science Foundation of China(91962211)National Key Research and Development Program of China(2018YFC1801803)+1 种基金National Natural Science Foundation of China(51804273)Major Project of Guangxi Science and Technology(Guike-AA18242022)。
文摘In order to clarify the solvent extraction and separation behaviors of rare earths and impurity of Al during the extraction and enrichment of low-concentration leach solution of ion-adsorption rare earth ore,the extraction mechanism and separation behaviors of Nd^(3+)and Al^(3+)in the Nd_(2)(SO_(4))_(3)-AI_(2)(SO_(4))_(3) mixed solution using P507 were studied in this work.The extraction of Nd^(3+)and Al^(3+)follows the cation exchange mechanism.With the increase of the equilibrium pH,β_(Nd/Al) in the extraction of the Nd_(2)(SO_(4))_(3)-Al_(2)(SO_(4))_(3) mixed solution using P507 is always higher than that in the extraction of single Nd_(2)(SO_(4))_(3) and Al_(2)(SO_(4))_(3) solutions.It can be attributed to the fact that the extraction of Nd^(3+)using P507 is much faster than that of Al^(3+),and Al^(3+)is more prone to be hydrolyzed at lower pH.β_(Nd/Al) in the extraction of the Nd_(2)(SO_(4))_(3)-Al_(2)(SO_(4))_(3) mixed solution decreases gradually with the increase of mixing time within the equilibrium pH range of 1.5-1.9.The extraction of Nd^(3+)using P507 is much faster than that of Al^(3+),but the stability of Al^(3+)-Ioaded organic phase is better than that of Nd^(3+)-loaded organic phase,thus Nd^(3+)in the Nd^(3+)-loaded organic phase is gradually replaced by Al^(3+)in the aqueous phase with the increase of mixing time.
文摘The massive reductions in anthropogenic emissions resulting from the COVID-19 lockdown provided a unique opportunity to evaluate the effect of mitigation measures aiming to abate air pollution.In Mexico,the total lockdown period took place during the dry-hot season when biomass burning activity is enhanced.Here,we investigate the role of biomass burning emissions on regional ozone levels in the Megalopolis of Central Mexico.The studied period covers the lockdown phases 2 and 3,and the first month of the New Normal.We applied a factor separation technique and process analysis to estimate the pure and synergistic contributions of emission reductions under lockdown and that from biomass burning to daily ozone maximum concentrations in 7 metropolitan areas of different states in the Megalopolis.The results revealed that biomass burning plumes likely masked the effect of massive reductions from mobile emissions,impacted the PBL development during phase 3 and favored transition and mixed NO_(x)-limited and VOC-limited regional regimes.This contributed to increased ozone production in the middle to lower PBL by changing the regional background levels which potentially could bias high ozone production efficiency estimations.Given the Megalopolis contribution to economic and societal development at national scale,our study suggests that ozone mitigation measures during the dry-hot season targeting mainly mobile emissions will likely be offset by biomass burning plumes.A regional and synergic policy aiming to control biomass burning would help to reduce the occurrence of high ozone levels in Central Mexico with the co-benefit of tackling short-lived climate pollutants.
基金Project support by the National Natural Science Foundation of China (50974042)Scientific Research Special Foundation of Doctor Subject of Chinese Universities (20090042120015)the Fundamental Research Funds for the Central Universities (N090302007)
文摘The separation coefficient of Nd/Pr was lower in D2EHPA-HCl system. Pointing to this problem,the effect of the acidity of feed and the concentration of lactic acid on the distribution ratio,separation coefficient and extraction capacity was investigated in unsaponified D2EHPA-HCl-LA system,and the regression equations were calculated in this paper. The results showed that the distribution ratio and separation coefficient both increased with decreasing of feed acidity and increasing of the lactic acid concentration,and the extraction capacity increased with increasing of lactic acid concentration in D2EHPA-HCl-LA system. When the pH value of the feed was 3.5 and lactic acid concentration was 0.6 mol/L,the max separation coefficient was 1.57,and the extraction capacity was 27.87 g/L.
基金supported by the National Natural Science Foundation of China(Grant No.51305329)the China Postdoctoral Science Foundation(Grant No.2014T70911)+1 种基金the Doctoral Foundation of Education Ministry of China(Grant No.20130201120040)Basic Research Project of Natural Science in Shaanxi Province(Grant No.2015JQ5183)
文摘To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating indicator, which was derived from the convergence condition of EASI, and can be used to evaluate the separation degree of separated signals. Furthermore, a nonlinear monotone increasing function between suitable step sizes and separating indicator is constructed to adaptively adjust step sizes, and forgetting factor is employed to weaken effects of data at the initial stage. Numerical case studies and experimental studies on a test bed with shell structures are provided to validate the efficiency improvement of the proposed method. This study can benefit for vibration & acoustic monitoring and control, and machinery condition monitoring and fault diagnosis.
文摘Extraction of Y(III) and Dy(III) from hydrochloric and nitric acids by Cy-572 in kerosene was studied. The factors affecting the extraction were separately investigated. The stoichiometry of the extracted species was deduced on the basis of slope analysis method. Evaluation of extraction equilibrium and stripping investigation was studied as well as saponification effect of Cy-572. The composition of the extracted metal species in the organic phase was found to be [MA·(HA)] for Y(III) or Dy(III) in both media.1.0 mol/L HCI is the best stripping agent for each metal ion from the studied acidic media in one step.Saponified Cy-572 does not exhibit any selectivity towards the extraction of Y(III) or Dy(III) from both HCI and HNOsolutions. Based on the obtained results, the data were compared and the separation feasibility between lanthanides and Y(III) in the two media was discussed.
基金supported by the National Natural Science Foundation of China(No.40905055,41175105)the Key Project of the Chinese Academy of Sciences(No.KZCX1-YW-06-04)
文摘A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs),biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface O3(O3DM) concentrations in East Asia in summer (June to August 2000).The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China,with a maximum of 60 ppbv,while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China,with a maximum of 25 ppbv.This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1×1) although global emissions of BVOCs are much greater than those of AVOCs.Daily maximum total contributions of BVOCs can approach 20 ppbv in North China,but they can reach 40 ppbv in South China,approaching or exceeding those in some developed countries in Europe and North America.BVOC emissions in such special areas should be considered when O3 control measures are taken.Synergistic contributions among AVOCs,BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China.Thus,the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location.This result suggests that O3 control measures obtained from episodic studies could be limited for long-term applications.