We use the separation of variable treatment to treat some time-dependent systems, and point out that the condition of separability is the same as the condition of existence of invariant, and the separation of variable...We use the separation of variable treatment to treat some time-dependent systems, and point out that the condition of separability is the same as the condition of existence of invariant, and the separation of variable treatment is interrelated with the quantum-invariant method and the propagator method. We directly use the separation of variable treatment to obtain the wavefunctions of the time-dependent Coulomb potential and the time-dependent Hulthén potential.展开更多
A new two-eigenfunctions theory, using the amplitude deflection and the generalized curvature as two fundamental eigenfunctions, is proposed for the free vibration solutions of a rectangular Mindlin plate. The three c...A new two-eigenfunctions theory, using the amplitude deflection and the generalized curvature as two fundamental eigenfunctions, is proposed for the free vibration solutions of a rectangular Mindlin plate. The three classical eigenvalue differential equations of a Mindlin plate are reformulated to arrive at two new eigenvalue differential equations for the proposed theory. The closed form eigensolutions, which are solved from the two differential equations by means of the method of separation of variables are identical with those via Kirchhoff plate theory for thin plate, and can be employed to predict frequencies for any combinations of simply supported and clamped edge conditions. The free edges can also be dealt with if the other pair of opposite edges are simply supported. Some of the solutions were not available before. The frequency parameters agree closely with the available ones through pb-2 Rayleigh-Ritz method for different aspect ratios and relative thickness of plate.展开更多
We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables...We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained.展开更多
Restrained bending of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are e...Restrained bending of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are established and solved. The boundary conditions are satisfied rigorously and the solutions are expressed by means of eigen function expansions. The diagram of shearing force is formulated by trigonometric series and used to determine the coefficients in above expansions. The computational resuits give the chord and span wise distributions of nomal and shear stress in the cover plate and the honeycomb core. At the same time, the attenuation of additional stress from fixed end to free end along the length of beam is shown clearly.展开更多
Restrained torsion of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are e...Restrained torsion of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are established and solved. The boundary conditions are satisfied rigorously and the solutions are expressed by means of eigen function expansions. The diagram of torque is formulated by trigonometric series and used to determine the coefficients in above expansions. The results of computation provide the chord-wise and span-wise distributions of normal and shear stress in the face plate along with shear stress in the honeycomb core.展开更多
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi...We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.展开更多
Based on the Hellinger_Reissner variatonal principle for Reissner plate bending and introducing dual variables,Hamiltonian dual equations for Reissner plate bending were presented.Therefore Hamiltonian solution system...Based on the Hellinger_Reissner variatonal principle for Reissner plate bending and introducing dual variables,Hamiltonian dual equations for Reissner plate bending were presented.Therefore Hamiltonian solution system can also be applied to Reissner plate bending problem,and the transformation from Euclidian space to symplectic space and from Lagrangian system to Hamiltonian system was realized.So in the symplectic space which consists of the original variables and their dual variables,the problem can be solved via effective mathematical physics methods such as the method of separation of variables and eigenfunction_vector expansion.All the eigensolutions and Jordan canonical form eigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail,and their physical meanings are showed clearly.The adjoint symplectic orthonormal relation of the eigenfunction vectors for zero eigenvalue are formed.It is showed that the all eigensolutions for zero eigenvalue are basic solutions of the Saint_Venant problem and they form a perfect symplectic subspace for zero eigenvalue.And the eigensolutions for nonzero eigenvalue are covered by the Saint_Venant theorem.The symplectic solution method is not the same as the classical semi_inverse method and breaks through the limit of the traditional semi_inverse solution.The symplectic solution method will have vast application.展开更多
文摘We use the separation of variable treatment to treat some time-dependent systems, and point out that the condition of separability is the same as the condition of existence of invariant, and the separation of variable treatment is interrelated with the quantum-invariant method and the propagator method. We directly use the separation of variable treatment to obtain the wavefunctions of the time-dependent Coulomb potential and the time-dependent Hulthén potential.
基金supported by the National Natural Science Foundation of China (10772014)
文摘A new two-eigenfunctions theory, using the amplitude deflection and the generalized curvature as two fundamental eigenfunctions, is proposed for the free vibration solutions of a rectangular Mindlin plate. The three classical eigenvalue differential equations of a Mindlin plate are reformulated to arrive at two new eigenvalue differential equations for the proposed theory. The closed form eigensolutions, which are solved from the two differential equations by means of the method of separation of variables are identical with those via Kirchhoff plate theory for thin plate, and can be employed to predict frequencies for any combinations of simply supported and clamped edge conditions. The free edges can also be dealt with if the other pair of opposite edges are simply supported. Some of the solutions were not available before. The frequency parameters agree closely with the available ones through pb-2 Rayleigh-Ritz method for different aspect ratios and relative thickness of plate.
基金National Natural Science Foundation of China under Grant No.10671156the Program for New Century Excellent Talents in Universities under Grant No.NCET-04-0968
文摘We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained.
文摘Restrained bending of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are established and solved. The boundary conditions are satisfied rigorously and the solutions are expressed by means of eigen function expansions. The diagram of shearing force is formulated by trigonometric series and used to determine the coefficients in above expansions. The computational resuits give the chord and span wise distributions of nomal and shear stress in the cover plate and the honeycomb core. At the same time, the attenuation of additional stress from fixed end to free end along the length of beam is shown clearly.
文摘Restrained torsion of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are established and solved. The boundary conditions are satisfied rigorously and the solutions are expressed by means of eigen function expansions. The diagram of torque is formulated by trigonometric series and used to determine the coefficients in above expansions. The results of computation provide the chord-wise and span-wise distributions of normal and shear stress in the face plate along with shear stress in the honeycomb core.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371098 and the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.
文摘Based on the Hellinger_Reissner variatonal principle for Reissner plate bending and introducing dual variables,Hamiltonian dual equations for Reissner plate bending were presented.Therefore Hamiltonian solution system can also be applied to Reissner plate bending problem,and the transformation from Euclidian space to symplectic space and from Lagrangian system to Hamiltonian system was realized.So in the symplectic space which consists of the original variables and their dual variables,the problem can be solved via effective mathematical physics methods such as the method of separation of variables and eigenfunction_vector expansion.All the eigensolutions and Jordan canonical form eigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail,and their physical meanings are showed clearly.The adjoint symplectic orthonormal relation of the eigenfunction vectors for zero eigenvalue are formed.It is showed that the all eigensolutions for zero eigenvalue are basic solutions of the Saint_Venant problem and they form a perfect symplectic subspace for zero eigenvalue.And the eigensolutions for nonzero eigenvalue are covered by the Saint_Venant theorem.The symplectic solution method is not the same as the classical semi_inverse method and breaks through the limit of the traditional semi_inverse solution.The symplectic solution method will have vast application.