期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High Utility Periodic Frequent Pattern Mining in Multiple Sequences
1
作者 Chien-Ming Chen Zhenzhou Zhang +1 位作者 Jimmy Ming-Tai Wu Kuruva Lakshmanna 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期733-759,共27页
Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic pa... Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic patternmining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodicpatterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequencesis more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences isimportant. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. To addressexisting problems, three new measures are defined: the utility, high support, and high-utility period sequenceratios. Further, a new upper bound, upSeqRa, and two new pruning properties were proposed. MHUPFPS usesa newly defined HUPFPS-list structure to significantly accelerate the reduction of the search space and improvethe overall performance of the algorithm. Furthermore, the proposed algorithmis evaluated using several datasets.The experimental results indicate that the algorithm is accurate and effective in filtering several non-high-utilityperiodic frequent patterns. 展开更多
关键词 Decision making frequent periodic pattern multi-sequence database sequential rules utility mining
下载PDF
Phrase-Level Sentiment Polarity Classification Using Rule-Based Typed Dependencies and Additional Complex Phrases Consideration
2
作者 陈坚永 罗镇川 +1 位作者 邓燕玲 张圭煜 《Journal of Computer Science & Technology》 SCIE EI CSCD 2012年第3期650-666,共17页
The advent of Web 2.0 has led to an increase in user-generated content on the Web. This has provided an extensive collection of free-style texts with opinion expressions that could influence the decisions and actions ... The advent of Web 2.0 has led to an increase in user-generated content on the Web. This has provided an extensive collection of free-style texts with opinion expressions that could influence the decisions and actions of their readers. Providers of such content exert a certain level of influence on the receivers and this is evident from blog sites having effect on their readers' purchase decisions, political view points, financial planning, and others. By detecting the opinion expressed, we can identify the sentiments on the topics discussed and the influence exerted on the readers. In this paper, we introduce an automatic approach in deriving polarity pattern rules to detect sentiment polarity at the phrase level, and in addition consider the effects of the more complex relationships found between words in sentiment polarity classification. Recent sentiment analysis research has focused on the functional relations of words using typed dependency parsing, providing a refined analysis on the grammar and semantics of textual data. Heuristics are typically used to determine the typed dependency polarity patterns, which may not comprehensively identify all possible rules. We study the use of class sequential rules (CSRs) to automatically learn the typed dependency patterns, and benchmark the performance of CSR against a heuristic method. Preliminary results show CSR leads to further improvements in classification performance achieving over 80% F1 scores in the test eases. In addition, we observe more complex relationships between words that could influence phrase sentiment polarity, and further discuss on possible approaches to handle the effects of these complex relationships. 展开更多
关键词 class sequential rule complex phrase sentiment analysis typed dependency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部