期刊文献+
共找到43,060篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of the causes of primary revision after unicompartmental knee arthroplasty: A case series 被引量:3
1
作者 Jin-Long Zhao Xiao Jin +5 位作者 He-Tao Huang Wei-Yi Yang Jia-Hui Li Ming-Hui Luo Jun Liu Jian-Ke Pan 《World Journal of Clinical Cases》 SCIE 2024年第9期1560-1568,共9页
BACKGROUND Unicompartmental knee arthroplasty(UKA)has great advantages in the treatment of unicompartmental knee osteoarthritis,but its revision rate is higher than that of total knee arthroplasty.AIM To summarize and... BACKGROUND Unicompartmental knee arthroplasty(UKA)has great advantages in the treatment of unicompartmental knee osteoarthritis,but its revision rate is higher than that of total knee arthroplasty.AIM To summarize and analyse the causes of revision after UKA.METHODS This is a retrospective case series study in which the reasons for the first revision after UKA are summarized.We analysed the clinical symptoms,medical histories,laboratory test results,imaging examination results and treatment processes of the patients who underwent revision and summarized the reasons for primary revision after UKA.RESULTS A total of 13 patients,including 3 males and 10 females,underwent revision surgery after UKA.The average age of the included patients was 67.62 years.The prosthesis was used for 3 d to 72 months.The main reasons for revision after UKA were improper suturing of the surgical opening(1 patient),osteophytes(2 patients),intra-articular loose bodies(2 patients),tibial prosthesis loosening(2 patients),rheumatoid arthritis(1 patient),gasket dislocation(3 patients),anterior cruciate ligament injury(1 patient),and medial collateral ligament injury with residual bone cement(1 patient).CONCLUSION The causes of primary revision after UKA were gasket dislocation,osteophytes,intra-articular loose bodies and tibial prosthesis loosening.Avoidance of these factors may greatly reduce the rate of revision after UKA,improve patient satisfaction and reduce medical burden. 展开更多
关键词 Unicompartmental knee arthroplasty Total knee arthroplasty CAUSES REVISION Case series
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
2
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 Defect detection time series deep learning data augmentation data transformation
下载PDF
A new method for coseismic offset detection from GPS coordinate time series
3
作者 Zhiwei Yang Guangyu Xu +3 位作者 Tengxu Zhang Mingkai Chen FeiWu Zhiping Chen 《Geodesy and Geodynamics》 EI CSCD 2023年第6期551-558,共8页
Currently,the extraction of coseismic offset signals primarily relies on earthquake catalog data to determine the occurrence time of earthquakes.This is followed by the process of differencing the average GPS coordina... Currently,the extraction of coseismic offset signals primarily relies on earthquake catalog data to determine the occurrence time of earthquakes.This is followed by the process of differencing the average GPS coordinate time series data,with a time interval of 3 to 5 days before and after the earthquake.In the face of the huge amount of GPS coordinate time series data today,the conventional approach of relying on earthquake catalog data to assist in obtaining coseismic offset signals has become increasingly burdensome.To address this problem,we propose a new method for automatically detecting coseismic offset signals in GPS coordinate time series without an extra earthquake catalog for reference.Firstly,we pre-process the GPS coordinate time series data for filtering out stations with significant observations missing and detecting and removing outliers.Secondly,we eliminate other signals and errors in the GPS coordinate time series,such as trend and seasonal signals,leaving the coseismic offset signals as the primary signal.The resulting coordinate time series is then modeled using the first-order difference and data stacking method.The modeling method enables automatic detection of the coseismic offset signals in the GPS coordinate time series.The aforementioned method is applied to automatically detect coseismic offset signals using simulated data and the Searles Valley GPS data in California,USA.The results demonstrate the efficacy of our proposed method,successfully detecting coseismic offsets from vast amounts of GPS coordinate time series data. 展开更多
关键词 GPS Coordinate time series Coseismic offset Signal detection
下载PDF
FFS重膜包装线常见故障原因分析及处理
4
作者 李刚 《工程建设(维泽科技)》 2024年第10期78-81,共4页
在现代工业生产中,包装技术的效率和精确性对产品质量和生产成本有着直接的影响。FFS(Form-Fill-Seal)重膜包装线作为一种高效的自动化包装解决方案,广泛应用于化工、食品、医药等多个行业。尽管FFS重膜包装线在自动化和高效包装方面具... 在现代工业生产中,包装技术的效率和精确性对产品质量和生产成本有着直接的影响。FFS(Form-Fill-Seal)重膜包装线作为一种高效的自动化包装解决方案,广泛应用于化工、食品、医药等多个行业。尽管FFS重膜包装线在自动化和高效包装方面具有显著优势,但在实际运行过程中仍然会遇到各种各样的故障问题。文中探讨热封效果差、开袋效果差、手抓夹紧及料门插袋问题以及码垛问题等常见故障的成因及其处理方法,并总结经验以供今后参考。 展开更多
关键词 ffs ffs 包装 重膜包装 热封
下载PDF
Reservoir characteristics and formation model of Upper Carboniferous bauxite series in eastern Ordos Basin,NW China 被引量:1
5
作者 LI Yong WANG Zhuangsen +2 位作者 SHAO Longyi GONG Jiaxun WU Peng 《Petroleum Exploration and Development》 SCIE 2024年第1期44-53,共10页
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact... Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems. 展开更多
关键词 North China Craton eastern Ordos Basin Upper Carboniferous bauxite series reservoir characteristics formation model gas accumulation
下载PDF
Unsupervised Time Series Segmentation: A Survey on Recent Advances
6
作者 Chengyu Wang Xionglve Li +1 位作者 Tongqing Zhou Zhiping Cai 《Computers, Materials & Continua》 SCIE EI 2024年第8期2657-2673,共17页
Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on t... Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on time series segmentation,most of them focus more on change point detection(CPD)methods and overlook the advances in boundary detection(BD)and state detection(SD)methods.In this paper,we categorize time series segmentation methods into CPD,BD,and SD methods,with a specific focus on recent advances in BD and SD methods.Within the scope of BD and SD,we subdivide the methods based on their underlying models/techniques and focus on the milestones that have shaped the development trajectory of each category.As a conclusion,we found that:(1)Existing methods failed to provide sufficient support for online working,with only a few methods supporting online deployment;(2)Most existing methods require the specification of parameters,which hinders their ability to work adaptively;(3)Existing SD methods do not attach importance to accurate detection of boundary points in evaluation,which may lead to limitations in boundary point detection.We highlight the ability to working online and adaptively as important attributes of segmentation methods,the boundary detection accuracy as a neglected metrics for SD methods. 展开更多
关键词 Time series segmentation time series state detection boundary detection change point detection
下载PDF
Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things
7
作者 Mengmeng Zhao Haipeng Peng +1 位作者 Lixiang Li Yeqing Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2815-2837,共23页
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A... In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods. 展开更多
关键词 Multivariate time series anomaly detection spatial-temporal network TRANSFORMER
下载PDF
An Innovative Deep Architecture for Flight Safety Risk Assessment Based on Time Series Data
8
作者 Hong Sun Fangquan Yang +2 位作者 Peiwen Zhang Yang Jiao Yunxiang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2549-2569,共21页
With the development of the integration of aviation safety and artificial intelligence,research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk manageme... With the development of the integration of aviation safety and artificial intelligence,research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk management,but searching for an efficient and accurate risk assessment algorithm has become a challenge for the civil aviation industry.Therefore,an improved risk assessment algorithm(PS-AE-LSTM)based on long short-term memory network(LSTM)with autoencoder(AE)is proposed for the various supervised deep learning algorithms in flight safety that cannot adequately address the problem of the quality on risk level labels.Firstly,based on the normal distribution characteristics of flight data,a probability severity(PS)model is established to enhance the quality of risk assessment labels.Secondly,autoencoder is introduced to reconstruct the flight parameter data to improve the data quality.Finally,utilizing the time-series nature of flight data,a long and short-termmemory network is used to classify the risk level and improve the accuracy of risk assessment.Thus,a risk assessment experimentwas conducted to analyze a fleet landing phase dataset using the PS-AE-LSTMalgorithm to assess the risk level associated with aircraft hard landing events.The results show that the proposed algorithm achieves an accuracy of 86.45%compared with seven baseline models and has excellent risk assessment capability. 展开更多
关键词 Safety engineering risk assessment time series data autoencoder LSTM
下载PDF
Periodic signal extraction of GNSS height time series based on adaptive singular spectrum analysis
9
作者 Chenfeng Li Peibing Yang +1 位作者 Tengxu Zhang Jiachun Guo 《Geodesy and Geodynamics》 EI CSCD 2024年第1期50-60,共11页
Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection... Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites. 展开更多
关键词 GNSS Time series Singular spectrum analysis Trace matrix Periodic signal
下载PDF
A Time Series Short-Term Prediction Method Based on Multi-Granularity Event Matching and Alignment
10
作者 Haibo Li Yongbo Yu +1 位作者 Zhenbo Zhao Xiaokang Tang 《Computers, Materials & Continua》 SCIE EI 2024年第1期653-676,共24页
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g... Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method. 展开更多
关键词 Time series short-term prediction multi-granularity event ALIGNMENT event matching
下载PDF
On power series statistical convergence and new uniform integrability of double sequences
11
作者 Sevda Y■ld■z Kamil Demirci 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期519-532,共14页
In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p... In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings. 展开更多
关键词 power series methods statistical convergence uniform integrability double sequences
下载PDF
TSCND:Temporal Subsequence-Based Convolutional Network with Difference for Time Series Forecasting
12
作者 Haoran Huang Weiting Chen Zheming Fan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3665-3681,共17页
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t... Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN. 展开更多
关键词 DIFFERENCE data prediction time series temporal convolutional network dilated convolution
下载PDF
CNN-LSTM based incremental attention mechanism enabled phase-space reconstruction for chaotic time series prediction
13
作者 Xiao-Qian Lu Jun Tian +2 位作者 Qiang Liao Zheng-Wu Xu Lu Gan 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期77-90,共14页
To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)pre... To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)prediction model based on the incremental attention mechanism.Firstly,a traversal search is conducted through the traversal layer for finite parameters in the phase space.Then,an incremental attention layer is utilized for parameter judgment based on the dimension weight criteria(DWC).The phase space parameters that best meet DWC are selected and fed into the input layer.Finally,the constructed CNN-LSTM network extracts spatio-temporal features and provides the final prediction results.The model is verified using Logistic,Lorenz,and sunspot chaotic time series,and the performance is compared from the two dimensions of prediction accuracy and network phase space structure.Additionally,the CNN-LSTM network based on incremental attention is compared with long short-term memory(LSTM),convolutional neural network(CNN),recurrent neural network(RNN),and support vector regression(SVR)for prediction accuracy.The experiment results indicate that the proposed composite network model possesses enhanced capability in extracting temporal features and achieves higher prediction accuracy.Also,the algorithm to estimate the phase space parameter is compared with the traditional CAO,false nearest neighbor,and C-C,three typical methods for determining the chaotic phase space parameters.The experiments reveal that the phase space parameter estimation algorithm based on the incremental attention mechanism is superior in prediction accuracy compared with the traditional phase space reconstruction method in five networks,including CNN-LSTM,LSTM,CNN,RNN,and SVR. 展开更多
关键词 Chaotic time series Incremental attention mechanism Phase-space reconstruction
下载PDF
Multivariate form of Hermite sampling series
14
作者 Rashad M.Asharabi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期253-265,共13页
In this paper,we establish a new multivariate Hermite sampling series involving samples from the function itself and its mixed and non-mixed partial derivatives of arbitrary order.This multivariate form of Hermite sam... In this paper,we establish a new multivariate Hermite sampling series involving samples from the function itself and its mixed and non-mixed partial derivatives of arbitrary order.This multivariate form of Hermite sampling will be valid for some classes of multivariate entire functions,satisfying certain growth conditions.We will show that many known results included in Commun Korean Math Soc,2002,17:731-740,Turk J Math,2017,41:387-403 and Filomat,2020,34:3339-3347 are special cases of our results.Moreover,we estimate the truncation error of this sampling based on localized sampling without decay assumption.Illustrative examples are also presented. 展开更多
关键词 multidimensional sampling series sampling with partial derivatives contour integral truncation error
下载PDF
Cross-Dimension Attentive Feature Fusion Network for Unsupervised Time-Series Anomaly Detection
15
作者 Rui Wang Yao Zhou +2 位作者 Guangchun Luo Peng Chen Dezhong Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3011-3027,共17页
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconst... Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection. 展开更多
关键词 Time series anomaly detection unsupervised feature learning feature fusion
下载PDF
Electromagnetic Performance Analysis of Variable Flux Memory Machines with Series-magnetic-circuit and Different Rotor Topologies
16
作者 Qiang Wei Z.Q.Zhu +4 位作者 Yan Jia Jianghua Feng Shuying Guo Yifeng Li Shouzhi Feng 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期3-11,共9页
In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies... In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions. 展开更多
关键词 Memory machine Permanent magnet Rotor topologies series magnetic circuit Variable flux
下载PDF
Evaluation of Generalized Error Function via Fast-Converging Power Series
17
作者 Serdar Beji 《Advances in Pure Mathematics》 2024年第6期495-514,共20页
A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power... A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders. 展开更多
关键词 Generalized Error Function Gamma Function Grandi’s Paradox Fast-Converging Power series
下载PDF
Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
18
作者 Ying Su Morgan C.Wang Shuai Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3529-3549,共21页
Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically ... Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically relies on expert input and necessitates substantial manual involvement.This manual effort spans model development,feature engineering,hyper-parameter tuning,and the intricate construction of time series models.The complexity of these tasks renders complete automation unfeasible,as they inherently demand human intervention at multiple junctures.To surmount these challenges,this article proposes leveraging Long Short-Term Memory,which is the variant of Recurrent Neural Networks,harnessing memory cells and gating mechanisms to facilitate long-term time series prediction.However,forecasting accuracy by particular neural network and traditional models can degrade significantly,when addressing long-term time-series tasks.Therefore,our research demonstrates that this innovative approach outperforms the traditional Autoregressive Integrated Moving Average(ARIMA)method in forecasting long-term univariate time series.ARIMA is a high-quality and competitive model in time series prediction,and yet it requires significant preprocessing efforts.Using multiple accuracy metrics,we have evaluated both ARIMA and proposed method on the simulated time-series data and real data in both short and long term.Furthermore,our findings indicate its superiority over alternative network architectures,including Fully Connected Neural Networks,Convolutional Neural Networks,and Nonpooling Convolutional Neural Networks.Our AutoML approach enables non-professional to attain highly accurate and effective time series forecasting,and can be widely applied to various domains,particularly in business and finance. 展开更多
关键词 Automated machine learning autoregressive integrated moving average neural networks time series analysis
下载PDF
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
19
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 Adaptive adjacency matrix Digital twin Graph convolutional network Multivariate time series prediction Spatial-temporal graph
下载PDF
Arthroscopic M-shaped suture fixation for tibia avulsion fracture of posterior cruciate ligament:A modified technique and case series
20
作者 Xiao-Hui Zhang Jian Yu +3 位作者 Meng-Yao Zhao Jin-Hui Cao Bing Wu Dan-Feng Xu 《World Journal of Orthopedics》 2024年第7期642-649,共8页
BACKGROUND Tibial avulsion fractures of the posterior cruciate ligament(PCL)are challenging to treat and compromise knee stability and function.Traditional open surgery often requires extensive soft tissue dissection,... BACKGROUND Tibial avulsion fractures of the posterior cruciate ligament(PCL)are challenging to treat and compromise knee stability and function.Traditional open surgery often requires extensive soft tissue dissection,which may increase the risk of morbidity.In response to these concerns,arthroscopic techniques have been evolving.The aim of this study was to introduce a modified arthroscopic tech-nique utilizing an M-shaped suture fixation method for the treatment of tibial avulsion fractures of the PCL and to evaluate its outcomes through a case series.AIM To evaluate the effects of arthroscopic M-shaped suture fixation on treating tibia avulsion fractures of the PCL.METHODS We developed a modified arthroscopic M-shaped suture fixation technique for tibia avulsion fractures of the PCL.This case series included 18 patients who underwent the procedure between January 2021 and December 2022.The patients were assessed for range of motion(ROM),Lysholm score and International knee documentation committee(IKDC)score.Postoperative complications were also recorded.RESULTS The patients were followed for a mean of 13.83±2.33 months.All patients showed radiographic union.At the final follow-up,all patients had full ROM and a negative posterior drawer test.The mean Lysholm score significantly improved from 45.28±8.92 preoperatively to 91.83±4.18 at the final follow-up(P<0.001),and the mean IKDC score improved from 41.98±6.06 preoperatively to 90.89±5.32 at the final follow-up(P<0.001).CONCLUSION The modified arthroscopic M-shaped suture fixation technique is a reliable and effective treatment for tibia avulsion fractures of the PCL,with excellent fracture healing and functional recovery. 展开更多
关键词 Posterior cruciate ligament Avulsion fracture ARTHROSCOPIC Case series Suture fixation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部