The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerical...The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerically simulated based on a new design which incorporates a central body. Axial distribution of the main parameters of gas flow was investigated,while the basic parameters of gas flow were obtained as functions of radius at the nozzle exit.The effect of the nozzle geometry on the swirling separation was analyzed.The numerical results show that water and heavy hydrocarbons can be condensed and separated from natural gas under the combined effect of the low temperature(-80℃) and the centrifugal field(482,400g,g is the acceleration of gravity).The gas dynamic parameters are uniformly distributed correspondingly in the radial central region of the channel,for example the distribution range of the static temperature and the centrifugal acceleration are from -80 to -55℃and 220,000g to 500,000g,respectively,which would create good conditions for the cyclone separation of the liquids.However,high gradients of gas dynamic parameters near the channel walls may impair the process of separation.The geometry of the nozzle has a great influence on the separation performance. Increasing the nozzle convergent angle can improve the separation efficiency.The swirling natural gas can be well separated when the divergent angle takes values from 4°to 12°in the convergent-divergent nozzle.展开更多
Although it is well known that cloud cavitation shows unsteady behavior with the growing motion of an attached cavity, the shedding motion of a cloud, the collapsing motion of the cloud shed downstream and a reentrant...Although it is well known that cloud cavitation shows unsteady behavior with the growing motion of an attached cavity, the shedding motion of a cloud, the collapsing motion of the cloud shed downstream and a reentrant motion in flow fields such as on a 2-D hydrofoil and in a convergent- divergent channel with a rectangular cross-section, observations for the periodic behavior of cloud cavitation in a cylindrical nozzle with a convergent-divergent part, which is mainly used in an industrial field, have hardly been conducted. From engineering viewpoints, it is important to elucidate the mechanism of periodic cavitation behavior in a cylindrical nozzle. In this study, a high-speed observation technique with an image analysis technique was applied to the cloud cavitation behavior in the nozzle to make clear the mechanism of unsteady behavior. As a result, it was observed in the nozzle that the periodic behavior occurs in the cloud cavitation and pressure waves form at the collapse of clouds shed downstream. Also, it was found through the image analysis based on the present technique that the pressure wave plays a role as a trigger mechanism to cause a reentrant motion at the downstream end of an attached cavity.展开更多
Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow fi...Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow field in convergent-divergent nozzle. Theory analysis and experiment results of mass flow rates conclude that the RNG k-ε model is the most suitable model. The pressure distribution in the convergent-divergent nozzle was revealed by computational fluid dynamic (CFD) simulating on the turbulent flow field under different pressure conditions. The growing conditions of cavitation bubbles were shown; meanwhile, the phenomena in the experiment could be explained. The differential pres- sure between the upstream and downstream in nozzle throat section can improve the cavitating effect of cavitation water jet.展开更多
Serpentine nozzles are widely used in combat aircraft to realize strong stealth characteristics.Based on the layout characteristics within a confined space,a series of double serpentine nozzles with spanwise offsets a...Serpentine nozzles are widely used in combat aircraft to realize strong stealth characteristics.Based on the layout characteristics within a confined space,a series of double serpentine nozzles with spanwise offsets are established.Using computational fluid dynamics and Taguchi method,the influence mechanisms of the Distribution of Area(DA),Distributions of Centerline for the first and second‘S’sections in the Vertical direction(DCV1 and DCV2),and Distribution of Centerline in the Spanwise direction(DCS)are analyzed.The impact of these factors on the total pressure recovery coefficient can be ranked as DA>DCV2>DCS>DCV1,whereas their impacts on the discharge coefficient and axial thrust coefficient can be ranked as DCV2>DCS>DA>DCV1.Considering the statistical significance of these factors,a nozzle in which DA changes rapidly at the exit and DCV1,DCV2,and DCS change rapidly at the entrance gives the best aerodynamic performance.Compared to the worst configuration,the total pressure recovery coefficient,discharge coefficient,and axial thrust coefficient are improved by 1.6%,3.5%and 3.6%,respectively.DA influences the gas flow acceleration in the entire serpentine channel,resulting in different wall shear stress and friction losses.The various centerline distributions influence the gas flow acceleration effects and form complex wave structures in the constantarea extension section,resulting in different local and friction losses.展开更多
Comprehensive optimization design of serpentine nozzle with trapezoidal outlet was studied to improve its aerodynamic and electromagnetic scattering performance.Serpentine nozzles with different center offsets and dif...Comprehensive optimization design of serpentine nozzle with trapezoidal outlet was studied to improve its aerodynamic and electromagnetic scattering performance.Serpentine nozzles with different center offsets and different ratios of the bases of the trapezoidal outlet were generated based on curvature control regulation.Computational Fluid Dynamics(CFD)simulations have been conducted to obtain the flow field in the nozzle,and Forward-Backward Iterative Physical Optics(FBIPO)method was applied to study the electromagnetic scattering characteristics of the nozzle.Guarantee Convergence Particle Swarm Optimization(GCPSO)algorithm based on Radial Basis Function(RBF)neural network was used to optimize the geometry of the nozzle in consideration of its aerodynamic and electromagnetic scattering characteristics.The results show that the GCPSO method based on RBF can be used to optimize the aerodynamic characteristics of the internal flow and the scattering characteristics of the cavity of the serpentine nozzle with irregular outlet.The optimized model has a higher center offset and a lower ratio of the bases of the trapezoidal outlet after optimization compared to the original model.The optimized model leads to a slight change in aerodynamic performance,with a total pressure recovery coefficient increase of 0.31%and a discharge coefficient increase of 0.41%.In addition,the Radar Cross Section(RCS)decreases also by around 83.33%and the overall performance is significantly improved,with a decrease of the optimized objective function by around 38.74%.展开更多
基金supported by the National High Technology Research and Development Program of China("863 program",No.2007AA09Z301) the National Major Science&Technology Specific Projects(No.2008ZX05017-004)
文摘The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerically simulated based on a new design which incorporates a central body. Axial distribution of the main parameters of gas flow was investigated,while the basic parameters of gas flow were obtained as functions of radius at the nozzle exit.The effect of the nozzle geometry on the swirling separation was analyzed.The numerical results show that water and heavy hydrocarbons can be condensed and separated from natural gas under the combined effect of the low temperature(-80℃) and the centrifugal field(482,400g,g is the acceleration of gravity).The gas dynamic parameters are uniformly distributed correspondingly in the radial central region of the channel,for example the distribution range of the static temperature and the centrifugal acceleration are from -80 to -55℃and 220,000g to 500,000g,respectively,which would create good conditions for the cyclone separation of the liquids.However,high gradients of gas dynamic parameters near the channel walls may impair the process of separation.The geometry of the nozzle has a great influence on the separation performance. Increasing the nozzle convergent angle can improve the separation efficiency.The swirling natural gas can be well separated when the divergent angle takes values from 4°to 12°in the convergent-divergent nozzle.
文摘Although it is well known that cloud cavitation shows unsteady behavior with the growing motion of an attached cavity, the shedding motion of a cloud, the collapsing motion of the cloud shed downstream and a reentrant motion in flow fields such as on a 2-D hydrofoil and in a convergent- divergent channel with a rectangular cross-section, observations for the periodic behavior of cloud cavitation in a cylindrical nozzle with a convergent-divergent part, which is mainly used in an industrial field, have hardly been conducted. From engineering viewpoints, it is important to elucidate the mechanism of periodic cavitation behavior in a cylindrical nozzle. In this study, a high-speed observation technique with an image analysis technique was applied to the cloud cavitation behavior in the nozzle to make clear the mechanism of unsteady behavior. As a result, it was observed in the nozzle that the periodic behavior occurs in the cloud cavitation and pressure waves form at the collapse of clouds shed downstream. Also, it was found through the image analysis based on the present technique that the pressure wave plays a role as a trigger mechanism to cause a reentrant motion at the downstream end of an attached cavity.
基金Supported by the National Natural Science Foundation of China (50621403,50604019)Program for New Century Excellent Talents in Univer sity(NCET-06-0767)
文摘Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow field in convergent-divergent nozzle. Theory analysis and experiment results of mass flow rates conclude that the RNG k-ε model is the most suitable model. The pressure distribution in the convergent-divergent nozzle was revealed by computational fluid dynamic (CFD) simulating on the turbulent flow field under different pressure conditions. The growing conditions of cavitation bubbles were shown; meanwhile, the phenomena in the experiment could be explained. The differential pres- sure between the upstream and downstream in nozzle throat section can improve the cavitating effect of cavitation water jet.
基金supported by the National Science and Technology Major Project of China(No.J2019-III-0009-0053).
文摘Serpentine nozzles are widely used in combat aircraft to realize strong stealth characteristics.Based on the layout characteristics within a confined space,a series of double serpentine nozzles with spanwise offsets are established.Using computational fluid dynamics and Taguchi method,the influence mechanisms of the Distribution of Area(DA),Distributions of Centerline for the first and second‘S’sections in the Vertical direction(DCV1 and DCV2),and Distribution of Centerline in the Spanwise direction(DCS)are analyzed.The impact of these factors on the total pressure recovery coefficient can be ranked as DA>DCV2>DCS>DCV1,whereas their impacts on the discharge coefficient and axial thrust coefficient can be ranked as DCV2>DCS>DA>DCV1.Considering the statistical significance of these factors,a nozzle in which DA changes rapidly at the exit and DCV1,DCV2,and DCS change rapidly at the entrance gives the best aerodynamic performance.Compared to the worst configuration,the total pressure recovery coefficient,discharge coefficient,and axial thrust coefficient are improved by 1.6%,3.5%and 3.6%,respectively.DA influences the gas flow acceleration in the entire serpentine channel,resulting in different wall shear stress and friction losses.The various centerline distributions influence the gas flow acceleration effects and form complex wave structures in the constantarea extension section,resulting in different local and friction losses.
基金the financial support of the Fundamental Research Funds for the Central Universities(No.31020190MS708)。
文摘Comprehensive optimization design of serpentine nozzle with trapezoidal outlet was studied to improve its aerodynamic and electromagnetic scattering performance.Serpentine nozzles with different center offsets and different ratios of the bases of the trapezoidal outlet were generated based on curvature control regulation.Computational Fluid Dynamics(CFD)simulations have been conducted to obtain the flow field in the nozzle,and Forward-Backward Iterative Physical Optics(FBIPO)method was applied to study the electromagnetic scattering characteristics of the nozzle.Guarantee Convergence Particle Swarm Optimization(GCPSO)algorithm based on Radial Basis Function(RBF)neural network was used to optimize the geometry of the nozzle in consideration of its aerodynamic and electromagnetic scattering characteristics.The results show that the GCPSO method based on RBF can be used to optimize the aerodynamic characteristics of the internal flow and the scattering characteristics of the cavity of the serpentine nozzle with irregular outlet.The optimized model has a higher center offset and a lower ratio of the bases of the trapezoidal outlet after optimization compared to the original model.The optimized model leads to a slight change in aerodynamic performance,with a total pressure recovery coefficient increase of 0.31%and a discharge coefficient increase of 0.41%.In addition,the Radar Cross Section(RCS)decreases also by around 83.33%and the overall performance is significantly improved,with a decrease of the optimized objective function by around 38.74%.