Sertoli cells are indispensable for guaranteeing normal spermatogenesis and male fertility.Although a huge number of long non-coding RNAs(lncRNAs)are identified from developing porcine testicular tissues and have been...Sertoli cells are indispensable for guaranteeing normal spermatogenesis and male fertility.Although a huge number of long non-coding RNAs(lncRNAs)are identified from developing porcine testicular tissues and have been predicted with crucial regulatory roles in spermatogenesis,their functions and regulatory mechanisms are still in infancy.Herein,we mainly explored the regulatory and functional roles of lncFPFSC in proliferation and apoptosis of immature porcine Sertoli cells.The results demonstrated that lncFPFSC was predominantly located in the cytoplasm of immature porcine Sertoli cells.lncFPFSC overexpression promoted cell cycle progression and cell proliferation,as well as inhibited cell apoptosis,whereas siRNA-induced lncFPFSC knockdown resulted in the opposite effects.Mechanistically,lncFPFSC acted as a sponge for miR-326.Overexpression of miR-326 inhibited cell proliferation and induced cell apoptosis,which further abolished the effects of lncFPFSC overexpression.The euchromatic histone-lysine N-methyltransferase 2(EHMT2)gene was directly targeted by miR-326,and its mRNA and protein expressions were both negatively regulated by miR-326 in immature porcine Sertoli cells.Then,siRNA-induced EHMT2 knockdown resulted a similar effect of miR-326 inhibition.Collectively,lncFPFSC promoted proliferation and inhibited apoptosis in immature porcine Sertoli cells through modulating the miR-326/EHMT2 axis.This study expanded our understanding of non-coding RNAs in participating porcine spermatogenesis through deciding the fate of Sertoli cells,and the competing endogenous RNA(ceRNA)network,and provided new molecular markers to treat Sertoli cell disorder inducing male infertility.展开更多
Microstructure and submicrostructure of Leydig cell and Sertoli cell in the testis of gonadal precocity and immaturation in cultured large yellow croaker, Pseudosciaena crocea, are studied using histology and electron...Microstructure and submicrostructure of Leydig cell and Sertoli cell in the testis of gonadal precocity and immaturation in cultured large yellow croaker, Pseudosciaena crocea, are studied using histology and electron microscopic technique. The results indicate that the fine structure of the two kinds of cells in different development stages presents an obvious difference. The smooth endoplasmic reticular and tubular mitochondria of Leydig cell and Sertoli cell are well developed in the testis of gonadal precocity, but poorly developed in the testis of immaturation. We suggest that the reason for gonadal precocity in the large yellow croaker may be related to the earlier development and maturation of Leydig cell and Sertoli cell.展开更多
Objective To construct Cox7a2 fluorescent vector and study its effect on cytochrome C oxidase ( COX) activity in mouse Sertoli cell line TM4. Methods The coding region of CoxTa2 was amplified from mouse Sertoli cell l...Objective To construct Cox7a2 fluorescent vector and study its effect on cytochrome C oxidase ( COX) activity in mouse Sertoli cell line TM4. Methods The coding region of CoxTa2 was amplified from mouse Sertoli cell line TM4 by RT-PCR. PCR product was展开更多
Estrogen plays an important role in regulating Sertoli cell number in the testis. The objective of the study was to identify whether 17β-estradiol affected the proliferation of cultured, immature boar Sertoli cells v...Estrogen plays an important role in regulating Sertoli cell number in the testis. The objective of the study was to identify whether 17β-estradiol affected the proliferation of cultured, immature boar Sertoli cells via the estrogen receptor β (ERβ) and the cAMP-extracellular signal-regulated kinase (ERK1/2) pathway. Low levels (10-10-10-8 mol L-1) of 17β-estradiol increased cell number, but high levels (10-7-10-6 mol L-1) decreased it (P〈0.05). Sertoli cell number began to recover for an additional 24 h in the medium without 17β-estradiol (10-6 mol L-l) (P〉0.05). The effects of 17β-estradiol (10-9 mol L-1) peaked at the first 24 h (P〈0.05). 17β-estradiol activated ERK1/2 from 5 min to 24 h, but the activiy of ERK1/2 began to decrease after 4 h. Both PD98059 and U0126, two ERK inhibitors, blocked cell division (P〈0.05). 17β-estradiol (10-10-10-6 mol L-1) dose-dependently increased cAMP production (P 〈 0.05), and both 17β-estradiol (10-9 mol L-1) and forskolin, which increases cAMP levels, induced cell proliferation and activated ERK1/2 (P〈 0.05). Rp-cAMP, an antagonist of cAMP, blocked this 17β-estradiol activity (P〈 0.05). Two estrogen receptor antagonists, ICI 182780 and ERβ antagonist (ERβAnt), reduced Sertoli cell number, cAMP production and ERK1/2 activation (P〈 0.05), but ERaAnt did not (P〉 0.05). Therefore, 17β- estradiol mainly promotes pig Sertoli cell proliferation via ERβ to induce cAMP production and ERK activation to promote cell proliferation.展开更多
Androgen and androgen receptor (AR) play important roles in male spermatogenesis and fertility, yet detailed androgen/AR signals in Sertoli cells remain unclear. To identify AR target genes in Sertoli cells, we anal...Androgen and androgen receptor (AR) play important roles in male spermatogenesis and fertility, yet detailed androgen/AR signals in Sertoli cells remain unclear. To identify AR target genes in Sertoli cells, we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR-/y) and their littermate wild-type (WT) mice. Digital gene expression analysis identified 2276 genes downregulated and 2865 genes upregulated in the S-AR-/y mice testis compared to WT ones. To further nail down the difference within Sertoli cells, we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells. Interestingly, additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing 10 times more androgen sensitivity than TM4 cells. In the condition where maximal androgen response was demonstrated, we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone. Among these genes, 603 androgen-/ AR-regulated genes, including 164 upregulated and 439 downregulated, were found in both S-AR-/y mice testis and TM4/AR cells. Using informatics analysis, the gene ontology was applied to analyze these androgen-/AR-regulated genes to predict the potential roles of androgen/AR in the process of spermatogenesis. Together, using gene analysis in both S-AR-/y mice testis and TM4/AR cells may help us to better understand the androeen/AR signals in Sertoli cells and their influences in spermatogenesis.展开更多
Aim: To examine the possible effect of heat treatment on expression of heat shock proteins (Hsps) 105, 70, and 60 in primary monkey Sertoli cells and to evaluate the possible signal pathways. Methods: Western blot...Aim: To examine the possible effect of heat treatment on expression of heat shock proteins (Hsps) 105, 70, and 60 in primary monkey Sertoli cells and to evaluate the possible signal pathways. Methods: Western blot analysis, realtime polymerase chain reaction (PCR), and confocal immunohistochemistry were used to analyze mRNA and protein levels of the Hsps in response to 43~C treatment of Sertoli cells isolated from pubertal monkey testes. Results: Staining with Hoechst 33342 indicated Sertoli cells did not undergo apoptosis after heat treatment. Hspl05 was expressed in cytoplasm of untreated Sertoli cells. Both Hspl05 mRNA and protein levels were increased approximately 20-fold compared to those of the untreated controls at 12 h after heat treatment. Untreated Sertoli cells did not express Hsp70, but heat stress induced its expression in the cell cytoplasm. The time-course of changes in Hsp70 was similar to that of Hsp105. In contrast to Hsp105 and Hsp70, the change in Hsp60 expression was much less obvious. The protein level between 12 h and 48 h after heat treatment was only approximately 1.5-fold that of the untreated control. Extracellular regulated kinase (ERK) 1/2 inhibitor (U0126) or phosphoinositide kinase-3 (PI3K) inhibitor (LY294002) could partially block the response of Hspl05 and Hsp70 induced by heat treatment. Conclusion: These results indicate that the heat-induced expression of the three types of Hsp in monkey Sertoli cells might be regulated by ERK and/or PI3K signal pathways, but the profile of their expression is different, suggesting that they might have different regulatory functions in Sertoli cells.展开更多
MicroRNAs(miRNAs) have been widely identified in porcine testicular tissues and implicated as crucial regulators of proliferation, apoptosis, and differentiation in porcine spermatogenesis related cells. However, the ...MicroRNAs(miRNAs) have been widely identified in porcine testicular tissues and implicated as crucial regulators of proliferation, apoptosis, and differentiation in porcine spermatogenesis related cells. However, the function roles of most of the miRNAs that have been identified in Sertoli cells are poorly understood. In the present study, six experiments were conducted to study the regulatory role of miR-10b in porcine immature Sertoli cells. In experiment 1, the results showed that the relative mRNA expression level of miR-10b in porcine testicular tissues decreased quadratically(P<0.001) with increasing age, while the relative mRNA expression level of DAZAP1 gene increased(P<0.001). In addition, the mRNA expression of miR-10b was negatively(P<0.01) correlated with DAZAP1 mRNA expression(r=–0.550). In experiment 2, the results from the bioinformatic analysis and a luciferase reporter assay demonstrated that miR-10b directly targeted the DAZAP1 gene in porcine immature Sertoli cells. DAZAP1 mRNA and protein expressions were both regulated(P<0.05) by miR-10b. In experiments 3 to 5, the over-expression of miR-10b or the siRNA-mediated knockdown of the DAZAP1 gene promoted(P<0.05) porcine immature Sertoli cell proliferation, as determined by the Cell Counting Kit-8(CCK-8) assay and the 5-Ethynyl-2′-deoxyuridine(EdU) assay. However, an annexin V-FITC/PI staining assay and the expression of cell survival-related genes indicated that over-expression of miR-10b or knockdown of DAZAP1 had no effect(P>0.05) on porcine immature Sertoli cell apoptosis. In experiment 6, the co-transfection treatment results showed that miR-10b promoted(P<0.05) porcine immature Sertoli cell proliferation by targeting DAZAP1 gene. Overall, these experiments demonstrated that miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene.展开更多
Aim: To assess the spatiotemporal changes in the expression of extracellular signal-regulated kinases 1 and 2 (ERK1/ 2), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) in respon...Aim: To assess the spatiotemporal changes in the expression of extracellular signal-regulated kinases 1 and 2 (ERK1/ 2), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) in response to heat stress in the cryptorchid testis, and to investigate a possible relation to Sertoli cell dedifferentiation. Methods: Immunohistochemistry and western blot were used to examine the expression and activation of ERK1/2, p38 and JNK in the cryptorchid testis at various stages after experimental cryptorchidism. Results: The abdominal temperature did not obviously change the total ERK1/2 expression but significantly activated phospho-ERK1/2 in the Sertoli cells of the cryptorchid testis. Heat stress increased total JNK expression in the Sertoli cells of the cryptorchid testis but did not activate phospho-JNK. Neither total p38 nor phospho-p38 was induced by heat stress in the Sertoli cells of the cryptorchid testis. Changes in the spatiotemporal expression of cytokeratin 18 (CK18), a marker of immature or undifferentiated Sertoli cells, were induced in the cryptorchid testis in a pattern similar to the activation of ERK1/2. Condusion: The activation of ERK1/2 in the testis may be related to dedifferentiation of Sertoli cells under heat stress induced by experimental cryptorchidism.展开更多
The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis.A new Sertoli cell line(POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the oliv...The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis.A new Sertoli cell line(POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages.Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P.olivaceus.Cells were optimally maintained at 25℃ in DMEM/F12 medium supplemented with fetal bovine serum,basic fibroblast growth factor,and epidermal growth factor.The growth curve of POSC showed a typical "S" shape.Chromosome analysis revealed that the cell line possessed the normal P.olivaceus diploid karyotype of 2n=48t.POSC expressed dmrt1 but not vasa,which was detected using RT-PCR and sequencing.Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL.Therefore,POSC appeared to consist of testicular Sertoli cells.Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid,with the transfection efficiency reaching 10%.This research not only offers an ideal model for further gene expression and regulation studies on P.olivaceus,but also serves as valuable material in studying fish spermatogenesis,Sertoli cell-germ cell interactions,and the mechanism of growth and development of testis.展开更多
Background:Spermatogenesis is an intricate developmental process during which undifferentiated spermatogonia,containing spermatogonial stem cells(SSCs),undergo self-renewal and differentiation to generate eventually m...Background:Spermatogenesis is an intricate developmental process during which undifferentiated spermatogonia,containing spermatogonial stem cells(SSCs),undergo self-renewal and differentiation to generate eventually mature spermatozoa.Spermatogenesis occurs in seminiferous tubules within the testis,and the seminiferous tubules harbor Sertoli and germ cells.Sertoli cells are an essential somatic cell type within the microenvironment that support and steer male germ cell development,whereas spermatogonia are the primitive male germ cells at the onset of spermatogenesis.While the developmental progression of Sertoli cells and spermatogonia has been well established in mice,much less is known in other mammalian species including pigs.Results:To acquire knowledge of Sertoli cell and spermatogonial development in pigs,here we collected as many as nine ages of Duroc porcine testes from the neonate to sexual maturity,i.e.,testes from 7-,30-,50-,70-,90-,110-,130-,150-and 210-day-old boars,and performed histological and immunohistochemical analyses on testis sections.We first examined the development of spermatogenic cells and seminiferous tubules in porcine testes.Then,by immunofluorescence staining for marker proteins(AMH,SOX9,DBA,UCHL1,VASA,KIT,Ki67 and/or PCNA),we delved into the proliferative activity and development of Sertoli cells and of spermatogonial subtypes(pro-,undifferentiated and differentiating spermatogonia).Besides,by immunostaining forβ-catenin and ZO-1,we studied the establishment of the blood-testis barrier in porcine testes.Conclusions:In this longitudinal study,we have systematically investigated the elaborate Sertoli cell and spermatogonial developmental patterns in pigs from the neonate to sexual maturity that have so far remained largely unknown.The findings not only extend the knowledge about spermatogenesis and testicular development in pigs,but also lay the theoretical groundwork for porcine breeding and rearing.展开更多
MicroRNAs(miRNAs) are implicated in swine spermatogenesis via their regulations of cell proliferation, apoptosis, and differentiation. Recent studies indicated that miR-34 c is indispensable in the late steps of sperm...MicroRNAs(miRNAs) are implicated in swine spermatogenesis via their regulations of cell proliferation, apoptosis, and differentiation. Recent studies indicated that miR-34 c is indispensable in the late steps of spermatogenesis. However, whether miR-34 c plays similar important roles in immature porcine Sertoli cells remain unknown. In the present study, we conducted two experiments using a completely randomised design to study the function roles of miR-34 c. The results from experiment I demonstrated that the relative expression level of miR-34 c in swine testicular tissues increased(P=0.0017) quadratically with increasing age, while the relative expression level of SMAD family member 7(SMAD7) decreased(P=0.0009) with curve. Furthermore, miR-34 c expression levels showed a significant negative correlation(P=0.013) with SMAD7 gene expression levels. The results from experiment II indicated that miR-34 c directly targets the SMAD7 gene using a luciferase reporter assay, and suppresses(P<0.05) SMAD7 mRNA and protein expressions in immature porcine Sertoli cells. Overexpression of miR-34 c inhibited(P<0.05) proliferation and enhanced(P<0.05) apoptosis in the immature porcine Sertoli cells, which was supported by the results from the Cell Counting Kit-8(CCK-8) assay, the 5-Ethynyl-2′-deoxyuridine(EdU) assay, and the Annexin V-FITC/PI staining assay. Furthermore, knockdown of SMAD7 via small interfering RNA(siR NA) gave a similar result. It is concluded that miR-34 c inhibits proliferation and enhances apoptosis in immature porcine Sertoli cells by targeting the SMAD7 gene.展开更多
Aim: To identify proteins induced by androgen in Sertoli cells during spermatogenesis. Methods: We analyzed protein profiles in TM4 Sertoli cells treated with dihydrotestosterone (DHT) using surface enhanced laser...Aim: To identify proteins induced by androgen in Sertoli cells during spermatogenesis. Methods: We analyzed protein profiles in TM4 Sertoli cells treated with dihydrotestosterone (DHT) using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Results: We found increases in the expression of a 5.0-kDa protein at 15 min, an 11.3-kDa protein at 24 h and 4.3 kDa, 5.7 kDa, 5.8 kDa, 9.95 kDa and 9.98 kDa proteins at 48 h after the treatment. In contrast, the expression of 6.3 kDa and 8.6 kDa proteins decreased at 30 min, and 4.9 kDa, 5.0 kDa, 12.4 kDa and 19.8 kDa proteins at 48 h after the treatment. The ll.3-kDa protein was identified as macrophage migration inhibitory factor (MIF) known to having various functions. The 9.98-kDa protein was identified as calgizzarin related to calcium channels. The timing of their expression suggests that MIF and calgizzarin are involved in late regulation of spermatogenesis in Sertoli cells by androgen. Conclusion: MIF and calgizzarin are two important androgen-responsive proteins produced by Sertoli cells and they might play a role in regulating spermatogenesis.展开更多
The effects of FSH on the proliferation of sertoli cells of new born calves were studied in order to provide some data for theoretical research and practical use of spermatogenesis in vitro. Different concentrations o...The effects of FSH on the proliferation of sertoli cells of new born calves were studied in order to provide some data for theoretical research and practical use of spermatogenesis in vitro. Different concentrations of FSH (0, 0.01, 0.02, 0.04, and 0.08 IU· mL^-1) were taken to treat bovine sertoli cells in vitro culture, the number of sertoli cells and the expression of seven genes were determined at 6, 12 and 24 h after FSH treatments. FSH could significantly promote the proliferation of in vitro cultured sertoli cells. FSH had no significant effects on the expression of CDC25A and could significantly improve the expression of CDC25B. 0.04 IU· mL^-1 and 0.08 IU· mL^-1 FSH treatments decreased the expression of CDC25C at 12 h. 0.08 IU· mL^-1 FSH treatment decreased the expression of CDC25C at 24 h. 0.04 IU. mLI FSH could significantly decrease the expression of GSK-3β and improve the expression of β-catenin at 6, 12 and 24 h. 0.02, 0.04 and 0.08 IU· mL^-1 FSH treatments enhanced the expressions of CYCLIND1 and C-MYC. In conclusion, FSH promoted the proliferation of sertoli cells and 0.04 IU· mL^-1 FSH concentration could significantly promote the proliferation of in vitro cultured sertoli cells. FSH promoted the proliferation of sertoli cells by CDC25B and WNT/ β-eatenin and CDC25B might be the key regulator to the proliferating rate of sertoli cells of bovine calf.展开更多
To investigate the effect of ureaplasma urealyticum (UU) on the expression of Fas ligand (FasL) on rat Sertoli cell Materials & Method Isolated rat Sertoli cells were infected by living UU, UU super- natants, inac...To investigate the effect of ureaplasma urealyticum (UU) on the expression of Fas ligand (FasL) on rat Sertoli cell Materials & Method Isolated rat Sertoli cells were infected by living UU, UU super- natants, inactivated UU, then Fluorescence Activated Cell Sorter and observed fluores- cence microscopy were used to assay for the FasL expression on the surface of Sertoli cells. Results UU infection could increase the expression of FasL in Sertoli cell. Conclusion The functional expression of FasL is related to the immune privilege and can give the immune regulation on the testis.展开更多
Background: Sertoli cells(SCs) create a specialized environment to support and dictate spermatogenesis.MicroRNAs(miRNAs), a kind of ~ 22 nt small noncoding RNAs, have been reported to be highly abundant in mouse SCs a...Background: Sertoli cells(SCs) create a specialized environment to support and dictate spermatogenesis.MicroRNAs(miRNAs), a kind of ~ 22 nt small noncoding RNAs, have been reported to be highly abundant in mouse SCs and play critical roles in spermatogenesis. However, the miRNAs of porcine SCs remain largely unknown.Methods: We isolated porcine SCs and conducted small RNA sequencing. By comparing miRNAs in germ cells, we systematically analyzed the miRNA expression pattern of porcine SCs. We screened the highly enriched SC miRNAs and predicted their functions by Gene Ontology analysis. The dual luciferase assay was used to elucidate the regulation of tumor necrosis factor receptor(TNFR)-associated factor 3(TRAF3) by ssc-miR-149.Results: The analysis showed that 18 miRNAs were highly expressed in SCs and 15 miRNAs were highly expressed in germ cells. These miRNAs were predicted to mediate SC and germ cell functions. In addition, ssc-miR-149 played critical roles in SCs by targeting TRAF3.Conclusion: Our findings provide novel insights into the miRNA expression pattern and their regulatory roles of porcine SCs.展开更多
Amh (anti-Müllerian hormone) is a single copy gene which is expressed strongly in Sertoli cells in the foetal testis and participates in the onset of sexual differentiation. Its promoter driving the expression of...Amh (anti-Müllerian hormone) is a single copy gene which is expressed strongly in Sertoli cells in the foetal testis and participates in the onset of sexual differentiation. Its promoter driving the expression of a reporter gene (d2EGFP) has been used to analyse the role of certain defined putative elements and a downstream enhancer element in gene expression. These experiments were carried out in vitro using a line of pre-pubertal mouse Sertoli cells, transienly transfected with circular DNA constructs with variously mutated promoter elements. A downstream enhancer element, situated immediately 3’ of the polyadenylation (PA) signal for Amh, has been inserted in an equivalent position in the d2EGFP construct. When the Amh promoter is unmodified, the downstream enhancer (DE) is positively associated with a large increase in EGFP expression. This is at least partly the consequence of an increased rate of expression by individual cells. Experiments using variously truncated Amh promoters indicate that an upstream region (-214 to -336) may play a minor role in facilitating enhancement. However mutation of the Wilms tumour factor-1 element, situated between the tata box and the start of translation, results in an almost complete suppression of enhancement.展开更多
Objective:Sertoli cells(SCs)provide physical support and material supply for germ cells and participate in the formation of blood-testis barrier.The number of SCs is directly proportional to the number of germ cells.A...Objective:Sertoli cells(SCs)provide physical support and material supply for germ cells and participate in the formation of blood-testis barrier.The number of SCs is directly proportional to the number of germ cells.And mature SCs ensure the growth of germ cells and the production of sperm.In this study,we explored the effect and underlying mechanism of Lycium barbarum polysaccharides(LBP)on primary SCs in young rats.Methods:Primary SCs were isolated from the testis of 20-day old rats.The cells were then treated with different concentrations of LBP.Immunocytochemistry was used to detect the expression of Ki67 and the androgen receptor(AR),and western blotting was used to detect the expression of cytokeratin-18(CK-18),AR and phosphorylated Akt(Ser473)in SCs.Results:The number of SCs increased significantly after LBP treatment,and the 100 mg/mL.LBP group had 14%more cells than the control group.The expression of Ki67 in LBP treated groups also increased significantly.LBP inhibited the expression of cytokeratin 18 in SCs.Besides,LBP increased the expression of AR on SCs and promoted the activation of Akt at the ser473 phosphorylation site.Conclusion:LBP promotes the proliferation of immature SCs in young rats and also accelerates their differentiation and maturation.This seems to be associated with activation of the Akt signaling pathway via up-regulation of AR.展开更多
Objective: This study aimed to investigate the histopathological examination of the testicular biopsies in infertile males with azoospermia. The patients were referred to the Urology Department in Salah Alden Hospital...Objective: This study aimed to investigate the histopathological examination of the testicular biopsies in infertile males with azoospermia. The patients were referred to the Urology Department in Salah Alden Hospital. Methods: The present study was carried out from May 2017 until June 2018 and the number of the patients group was 60. The patients aged between 20 to 50 years. 20 of them were selected and subjected to histopathological examinations by taking biopsies from their testes. Results: The sertoli-cell-only syndrome (SCOS) was the most common positive histopathological finding comprising 35% of the cases. This was followed by testicular atrophy with 30%, while maturation arrest was 20%. The percentage of hypospermatogenesis was 10% and normal spermatogenesis was 5%. Conclusion: Among the 20 specimens examined, the sertoli-cell-only syndrome (SCOS) was the most common positive histopathological finding. The semen analysis and testicular biopsy provide valuable information about the etiology and the fertility potential of an individual.展开更多
The phosphoinositide-3-kinase/Akt(PI3K/AKT)signaling pathway is crucial for Sertoli cell development and completing spermatogenesis.Its main role is to promote proliferation and inhibit apoptosis.Many factors activate...The phosphoinositide-3-kinase/Akt(PI3K/AKT)signaling pathway is crucial for Sertoli cell development and completing spermatogenesis.Its main role is to promote proliferation and inhibit apoptosis.Many factors activate the PI3K/AKT pathway,like hormones,such as follicle stimulating hormone(FSH),androgen,estrogen,insulin to name a few.Many of these factors have receptors inside or on the surface of Sertoli cells(SCs).This review summarizes how these hormones directly regulate the PI3K/AKT signaling pathway in SCs,which in turn affects SC proliferation and differentiation.Further,hormone-mediated PI3K/AKT signaling also stimulates SC secretion,which is essential for germ cell development,suggesting an indirect role of PI3K/AKT signaling during spermatogenesis.These functions include promoting spermatogonia proliferation and differentiation,meiosis of spermatocytes,sperm maturation,and their release.This review also provides potential hints for clinically treating male infertility issues like cryptorchidism and Sertoli cell-only syndrome.展开更多
Aim: To determine the effectiveness of the ski 1, sk9 and ski 1 TNUA5 Sertoli cell lines in binding germ cells in vitro. Methods: The immortalized Sertoli cell lines sk9, ski 1 and ski 1 TNUA5 were used in co-cultur...Aim: To determine the effectiveness of the ski 1, sk9 and ski 1 TNUA5 Sertoli cell lines in binding germ cells in vitro. Methods: The immortalized Sertoli cell lines sk9, ski 1 and ski 1 TNUA5 were used in co-culture experiments with germ cells in media with or without reproductive hormones and incubated for 44 h at 32℃. The number of germ cells bound to Sertoli cells was then determined and statistically analyzed. Western blot analysis and reverse transcriptasepolymerase chain reaction (RT-PCR) studies were employed to investigate the presence of cell adhesion proteins and follicle stimulating hormone (FSH) receptor, respectively. Results: No statistical difference between the number of bound step-8 spermatids and bound pre-step 8 spermatids on Sertoli cells from any of the cell lines existed. After the addition of germ cells, Sertoli ceils showed more lipid accumulation in their cytoplasm, indicating active phagocytosis. Western blot analysis in the ski I TNUA5 line indicated the expression of N-cadherin. FSH-only and testosterone-only treatments increased N-cadherin expression, regardless of germ cell addition. The addition of germ cells to the ski l TNUA5 Sertoli cells increased the expression of espin, as did the addition of FSH with germ cells. RT-PCR studies of the ski I TNUA5 cells indicated that the mRNA for FSH receptor decreased with successive passages. Conclusion: In vitro binding between isolated germ cells and sk9, skll or skll TNUA5 Sertoli cells is not feasible, and therefore these cell lines are not useful for the in vitro investigation of Sertoli-germ cell interactions and primary Sertoli cell isolates must still be used.展开更多
基金supported by the special funds for Changsha Municipal Natural Science Foundation,China(kq2202229)the Hunan Provincial Natural Science Foundation of China(2023JJ30296 and 2023JJ60247)a Key R&D Projects(2020NK2024)in Hunan Province,China(2020NK2024)。
文摘Sertoli cells are indispensable for guaranteeing normal spermatogenesis and male fertility.Although a huge number of long non-coding RNAs(lncRNAs)are identified from developing porcine testicular tissues and have been predicted with crucial regulatory roles in spermatogenesis,their functions and regulatory mechanisms are still in infancy.Herein,we mainly explored the regulatory and functional roles of lncFPFSC in proliferation and apoptosis of immature porcine Sertoli cells.The results demonstrated that lncFPFSC was predominantly located in the cytoplasm of immature porcine Sertoli cells.lncFPFSC overexpression promoted cell cycle progression and cell proliferation,as well as inhibited cell apoptosis,whereas siRNA-induced lncFPFSC knockdown resulted in the opposite effects.Mechanistically,lncFPFSC acted as a sponge for miR-326.Overexpression of miR-326 inhibited cell proliferation and induced cell apoptosis,which further abolished the effects of lncFPFSC overexpression.The euchromatic histone-lysine N-methyltransferase 2(EHMT2)gene was directly targeted by miR-326,and its mRNA and protein expressions were both negatively regulated by miR-326 in immature porcine Sertoli cells.Then,siRNA-induced EHMT2 knockdown resulted a similar effect of miR-326 inhibition.Collectively,lncFPFSC promoted proliferation and inhibited apoptosis in immature porcine Sertoli cells through modulating the miR-326/EHMT2 axis.This study expanded our understanding of non-coding RNAs in participating porcine spermatogenesis through deciding the fate of Sertoli cells,and the competing endogenous RNA(ceRNA)network,and provided new molecular markers to treat Sertoli cell disorder inducing male infertility.
基金This work is supported by the National 863 Project(819-02-012).
文摘Microstructure and submicrostructure of Leydig cell and Sertoli cell in the testis of gonadal precocity and immaturation in cultured large yellow croaker, Pseudosciaena crocea, are studied using histology and electron microscopic technique. The results indicate that the fine structure of the two kinds of cells in different development stages presents an obvious difference. The smooth endoplasmic reticular and tubular mitochondria of Leydig cell and Sertoli cell are well developed in the testis of gonadal precocity, but poorly developed in the testis of immaturation. We suggest that the reason for gonadal precocity in the large yellow croaker may be related to the earlier development and maturation of Leydig cell and Sertoli cell.
文摘Objective To construct Cox7a2 fluorescent vector and study its effect on cytochrome C oxidase ( COX) activity in mouse Sertoli cell line TM4. Methods The coding region of CoxTa2 was amplified from mouse Sertoli cell line TM4 by RT-PCR. PCR product was
基金supported by the National Natural Science Foundation of China(30270955)the Foundamental Research Funds for the Central Universities,China(XDJK2009B035)
文摘Estrogen plays an important role in regulating Sertoli cell number in the testis. The objective of the study was to identify whether 17β-estradiol affected the proliferation of cultured, immature boar Sertoli cells via the estrogen receptor β (ERβ) and the cAMP-extracellular signal-regulated kinase (ERK1/2) pathway. Low levels (10-10-10-8 mol L-1) of 17β-estradiol increased cell number, but high levels (10-7-10-6 mol L-1) decreased it (P〈0.05). Sertoli cell number began to recover for an additional 24 h in the medium without 17β-estradiol (10-6 mol L-l) (P〉0.05). The effects of 17β-estradiol (10-9 mol L-1) peaked at the first 24 h (P〈0.05). 17β-estradiol activated ERK1/2 from 5 min to 24 h, but the activiy of ERK1/2 began to decrease after 4 h. Both PD98059 and U0126, two ERK inhibitors, blocked cell division (P〈0.05). 17β-estradiol (10-10-10-6 mol L-1) dose-dependently increased cAMP production (P 〈 0.05), and both 17β-estradiol (10-9 mol L-1) and forskolin, which increases cAMP levels, induced cell proliferation and activated ERK1/2 (P〈 0.05). Rp-cAMP, an antagonist of cAMP, blocked this 17β-estradiol activity (P〈 0.05). Two estrogen receptor antagonists, ICI 182780 and ERβ antagonist (ERβAnt), reduced Sertoli cell number, cAMP production and ERK1/2 activation (P〈 0.05), but ERaAnt did not (P〉 0.05). Therefore, 17β- estradiol mainly promotes pig Sertoli cell proliferation via ERβ to induce cAMP production and ERK activation to promote cell proliferation.
基金This work was supported by the National Natural Science Foundation of China (no. 30971636), and the George H. Whipple Professorship Endowment, and National Science Council, Talwan, China (96-2314-B-182A-023-MY2 and 97- 2314-B-182A-077-MY3). Supplementary Information accompanies the paper on Asian lournal of Andrology website (http:Hwww.nature.com/aja).
文摘Androgen and androgen receptor (AR) play important roles in male spermatogenesis and fertility, yet detailed androgen/AR signals in Sertoli cells remain unclear. To identify AR target genes in Sertoli cells, we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR-/y) and their littermate wild-type (WT) mice. Digital gene expression analysis identified 2276 genes downregulated and 2865 genes upregulated in the S-AR-/y mice testis compared to WT ones. To further nail down the difference within Sertoli cells, we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells. Interestingly, additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing 10 times more androgen sensitivity than TM4 cells. In the condition where maximal androgen response was demonstrated, we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone. Among these genes, 603 androgen-/ AR-regulated genes, including 164 upregulated and 439 downregulated, were found in both S-AR-/y mice testis and TM4/AR cells. Using informatics analysis, the gene ontology was applied to analyze these androgen-/AR-regulated genes to predict the potential roles of androgen/AR in the process of spermatogenesis. Together, using gene analysis in both S-AR-/y mice testis and TM4/AR cells may help us to better understand the androeen/AR signals in Sertoli cells and their influences in spermatogenesis.
基金Acknowledgment This study was supported by the "973" project (No. 2006CB504001), the Major Research Plan (No. 2006CB944001), the CAS Innovation Project (KSCA2- YW-R-55), the National Natural Science Foundation of China (No. 3061800530230190 30600311), and the Beijing Natural Science Foundation (No. 5073032).
文摘Aim: To examine the possible effect of heat treatment on expression of heat shock proteins (Hsps) 105, 70, and 60 in primary monkey Sertoli cells and to evaluate the possible signal pathways. Methods: Western blot analysis, realtime polymerase chain reaction (PCR), and confocal immunohistochemistry were used to analyze mRNA and protein levels of the Hsps in response to 43~C treatment of Sertoli cells isolated from pubertal monkey testes. Results: Staining with Hoechst 33342 indicated Sertoli cells did not undergo apoptosis after heat treatment. Hspl05 was expressed in cytoplasm of untreated Sertoli cells. Both Hspl05 mRNA and protein levels were increased approximately 20-fold compared to those of the untreated controls at 12 h after heat treatment. Untreated Sertoli cells did not express Hsp70, but heat stress induced its expression in the cell cytoplasm. The time-course of changes in Hsp70 was similar to that of Hsp105. In contrast to Hsp105 and Hsp70, the change in Hsp60 expression was much less obvious. The protein level between 12 h and 48 h after heat treatment was only approximately 1.5-fold that of the untreated control. Extracellular regulated kinase (ERK) 1/2 inhibitor (U0126) or phosphoinositide kinase-3 (PI3K) inhibitor (LY294002) could partially block the response of Hspl05 and Hsp70 induced by heat treatment. Conclusion: These results indicate that the heat-induced expression of the three types of Hsp in monkey Sertoli cells might be regulated by ERK and/or PI3K signal pathways, but the profile of their expression is different, suggesting that they might have different regulatory functions in Sertoli cells.
基金financially supported by the earmarked fund for China Agriculture Research System (CARS-36)the Hunan Provincial Natural Science Foundation of China (2018JJ2176 and 2018JJ3219)
文摘MicroRNAs(miRNAs) have been widely identified in porcine testicular tissues and implicated as crucial regulators of proliferation, apoptosis, and differentiation in porcine spermatogenesis related cells. However, the function roles of most of the miRNAs that have been identified in Sertoli cells are poorly understood. In the present study, six experiments were conducted to study the regulatory role of miR-10b in porcine immature Sertoli cells. In experiment 1, the results showed that the relative mRNA expression level of miR-10b in porcine testicular tissues decreased quadratically(P<0.001) with increasing age, while the relative mRNA expression level of DAZAP1 gene increased(P<0.001). In addition, the mRNA expression of miR-10b was negatively(P<0.01) correlated with DAZAP1 mRNA expression(r=–0.550). In experiment 2, the results from the bioinformatic analysis and a luciferase reporter assay demonstrated that miR-10b directly targeted the DAZAP1 gene in porcine immature Sertoli cells. DAZAP1 mRNA and protein expressions were both regulated(P<0.05) by miR-10b. In experiments 3 to 5, the over-expression of miR-10b or the siRNA-mediated knockdown of the DAZAP1 gene promoted(P<0.05) porcine immature Sertoli cell proliferation, as determined by the Cell Counting Kit-8(CCK-8) assay and the 5-Ethynyl-2′-deoxyuridine(EdU) assay. However, an annexin V-FITC/PI staining assay and the expression of cell survival-related genes indicated that over-expression of miR-10b or knockdown of DAZAP1 had no effect(P>0.05) on porcine immature Sertoli cell apoptosis. In experiment 6, the co-transfection treatment results showed that miR-10b promoted(P<0.05) porcine immature Sertoli cell proliferation by targeting DAZAP1 gene. Overall, these experiments demonstrated that miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene.
基金Acknowledgment This study was supported by the National Natural Science Foundation of China (30230190), the National Basic Science Research and Development Project (973) (G1999055901) and the Chinese Academy of Sciences (CAS) Knowledge Innovation Program (KSCX-2-SW-201).
文摘Aim: To assess the spatiotemporal changes in the expression of extracellular signal-regulated kinases 1 and 2 (ERK1/ 2), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) in response to heat stress in the cryptorchid testis, and to investigate a possible relation to Sertoli cell dedifferentiation. Methods: Immunohistochemistry and western blot were used to examine the expression and activation of ERK1/2, p38 and JNK in the cryptorchid testis at various stages after experimental cryptorchidism. Results: The abdominal temperature did not obviously change the total ERK1/2 expression but significantly activated phospho-ERK1/2 in the Sertoli cells of the cryptorchid testis. Heat stress increased total JNK expression in the Sertoli cells of the cryptorchid testis but did not activate phospho-JNK. Neither total p38 nor phospho-p38 was induced by heat stress in the Sertoli cells of the cryptorchid testis. Changes in the spatiotemporal expression of cytokeratin 18 (CK18), a marker of immature or undifferentiated Sertoli cells, were induced in the cryptorchid testis in a pattern similar to the activation of ERK1/2. Condusion: The activation of ERK1/2 in the testis may be related to dedifferentiation of Sertoli cells under heat stress induced by experimental cryptorchidism.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2012AA10A408,2012AA10A402)the National Natural Science Foundation of China(No.41276171)the National Flatfish Industry System Construction Program(No.nycytx-50-G03)
文摘The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis.A new Sertoli cell line(POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages.Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P.olivaceus.Cells were optimally maintained at 25℃ in DMEM/F12 medium supplemented with fetal bovine serum,basic fibroblast growth factor,and epidermal growth factor.The growth curve of POSC showed a typical "S" shape.Chromosome analysis revealed that the cell line possessed the normal P.olivaceus diploid karyotype of 2n=48t.POSC expressed dmrt1 but not vasa,which was detected using RT-PCR and sequencing.Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL.Therefore,POSC appeared to consist of testicular Sertoli cells.Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid,with the transfection efficiency reaching 10%.This research not only offers an ideal model for further gene expression and regulation studies on P.olivaceus,but also serves as valuable material in studying fish spermatogenesis,Sertoli cell-germ cell interactions,and the mechanism of growth and development of testis.
基金supported by the National Natural Science Foundation of China(Grant No.32002178 and 31772605)the Undergraduate Training Program for Innovation and Entrepreneurship(X202110712185).
文摘Background:Spermatogenesis is an intricate developmental process during which undifferentiated spermatogonia,containing spermatogonial stem cells(SSCs),undergo self-renewal and differentiation to generate eventually mature spermatozoa.Spermatogenesis occurs in seminiferous tubules within the testis,and the seminiferous tubules harbor Sertoli and germ cells.Sertoli cells are an essential somatic cell type within the microenvironment that support and steer male germ cell development,whereas spermatogonia are the primitive male germ cells at the onset of spermatogenesis.While the developmental progression of Sertoli cells and spermatogonia has been well established in mice,much less is known in other mammalian species including pigs.Results:To acquire knowledge of Sertoli cell and spermatogonial development in pigs,here we collected as many as nine ages of Duroc porcine testes from the neonate to sexual maturity,i.e.,testes from 7-,30-,50-,70-,90-,110-,130-,150-and 210-day-old boars,and performed histological and immunohistochemical analyses on testis sections.We first examined the development of spermatogenic cells and seminiferous tubules in porcine testes.Then,by immunofluorescence staining for marker proteins(AMH,SOX9,DBA,UCHL1,VASA,KIT,Ki67 and/or PCNA),we delved into the proliferative activity and development of Sertoli cells and of spermatogonial subtypes(pro-,undifferentiated and differentiating spermatogonia).Besides,by immunostaining forβ-catenin and ZO-1,we studied the establishment of the blood-testis barrier in porcine testes.Conclusions:In this longitudinal study,we have systematically investigated the elaborate Sertoli cell and spermatogonial developmental patterns in pigs from the neonate to sexual maturity that have so far remained largely unknown.The findings not only extend the knowledge about spermatogenesis and testicular development in pigs,but also lay the theoretical groundwork for porcine breeding and rearing.
基金financially supported by the earmarked fund for China Agriculture Research System (CARS-36)the Hunan Provincial Natural Science Foundation of China (2018JJ3219 and 2018JJ2176)the Excellent Doctoral Dissertation Cultivating Fund of Hunan Agricultural University, China (YB2015001)
文摘MicroRNAs(miRNAs) are implicated in swine spermatogenesis via their regulations of cell proliferation, apoptosis, and differentiation. Recent studies indicated that miR-34 c is indispensable in the late steps of spermatogenesis. However, whether miR-34 c plays similar important roles in immature porcine Sertoli cells remain unknown. In the present study, we conducted two experiments using a completely randomised design to study the function roles of miR-34 c. The results from experiment I demonstrated that the relative expression level of miR-34 c in swine testicular tissues increased(P=0.0017) quadratically with increasing age, while the relative expression level of SMAD family member 7(SMAD7) decreased(P=0.0009) with curve. Furthermore, miR-34 c expression levels showed a significant negative correlation(P=0.013) with SMAD7 gene expression levels. The results from experiment II indicated that miR-34 c directly targets the SMAD7 gene using a luciferase reporter assay, and suppresses(P<0.05) SMAD7 mRNA and protein expressions in immature porcine Sertoli cells. Overexpression of miR-34 c inhibited(P<0.05) proliferation and enhanced(P<0.05) apoptosis in the immature porcine Sertoli cells, which was supported by the results from the Cell Counting Kit-8(CCK-8) assay, the 5-Ethynyl-2′-deoxyuridine(EdU) assay, and the Annexin V-FITC/PI staining assay. Furthermore, knockdown of SMAD7 via small interfering RNA(siR NA) gave a similar result. It is concluded that miR-34 c inhibits proliferation and enhances apoptosis in immature porcine Sertoli cells by targeting the SMAD7 gene.
文摘Aim: To identify proteins induced by androgen in Sertoli cells during spermatogenesis. Methods: We analyzed protein profiles in TM4 Sertoli cells treated with dihydrotestosterone (DHT) using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Results: We found increases in the expression of a 5.0-kDa protein at 15 min, an 11.3-kDa protein at 24 h and 4.3 kDa, 5.7 kDa, 5.8 kDa, 9.95 kDa and 9.98 kDa proteins at 48 h after the treatment. In contrast, the expression of 6.3 kDa and 8.6 kDa proteins decreased at 30 min, and 4.9 kDa, 5.0 kDa, 12.4 kDa and 19.8 kDa proteins at 48 h after the treatment. The ll.3-kDa protein was identified as macrophage migration inhibitory factor (MIF) known to having various functions. The 9.98-kDa protein was identified as calgizzarin related to calcium channels. The timing of their expression suggests that MIF and calgizzarin are involved in late regulation of spermatogenesis in Sertoli cells by androgen. Conclusion: MIF and calgizzarin are two important androgen-responsive proteins produced by Sertoli cells and they might play a role in regulating spermatogenesis.
基金Supported by the National International Scientific and Technological Cooperation Project(2011DFA30760-2-1)Fund of Key Lab.of Northeast Agricultural University,Harbin,China(GXZDSYS-2012-07)
文摘The effects of FSH on the proliferation of sertoli cells of new born calves were studied in order to provide some data for theoretical research and practical use of spermatogenesis in vitro. Different concentrations of FSH (0, 0.01, 0.02, 0.04, and 0.08 IU· mL^-1) were taken to treat bovine sertoli cells in vitro culture, the number of sertoli cells and the expression of seven genes were determined at 6, 12 and 24 h after FSH treatments. FSH could significantly promote the proliferation of in vitro cultured sertoli cells. FSH had no significant effects on the expression of CDC25A and could significantly improve the expression of CDC25B. 0.04 IU· mL^-1 and 0.08 IU· mL^-1 FSH treatments decreased the expression of CDC25C at 12 h. 0.08 IU· mL^-1 FSH treatment decreased the expression of CDC25C at 24 h. 0.04 IU. mLI FSH could significantly decrease the expression of GSK-3β and improve the expression of β-catenin at 6, 12 and 24 h. 0.02, 0.04 and 0.08 IU· mL^-1 FSH treatments enhanced the expressions of CYCLIND1 and C-MYC. In conclusion, FSH promoted the proliferation of sertoli cells and 0.04 IU· mL^-1 FSH concentration could significantly promote the proliferation of in vitro cultured sertoli cells. FSH promoted the proliferation of sertoli cells by CDC25B and WNT/ β-eatenin and CDC25B might be the key regulator to the proliferating rate of sertoli cells of bovine calf.
基金Granted by National Natural Science Fundation of China (39970283)
文摘To investigate the effect of ureaplasma urealyticum (UU) on the expression of Fas ligand (FasL) on rat Sertoli cell Materials & Method Isolated rat Sertoli cells were infected by living UU, UU super- natants, inactivated UU, then Fluorescence Activated Cell Sorter and observed fluores- cence microscopy were used to assay for the FasL expression on the surface of Sertoli cells. Results UU infection could increase the expression of FasL in Sertoli cell. Conclusion The functional expression of FasL is related to the immune privilege and can give the immune regulation on the testis.
基金supported in part by the National Natural Science Foundation of China (Grant No. 31572401, 31772605) to W.Z。
文摘Background: Sertoli cells(SCs) create a specialized environment to support and dictate spermatogenesis.MicroRNAs(miRNAs), a kind of ~ 22 nt small noncoding RNAs, have been reported to be highly abundant in mouse SCs and play critical roles in spermatogenesis. However, the miRNAs of porcine SCs remain largely unknown.Methods: We isolated porcine SCs and conducted small RNA sequencing. By comparing miRNAs in germ cells, we systematically analyzed the miRNA expression pattern of porcine SCs. We screened the highly enriched SC miRNAs and predicted their functions by Gene Ontology analysis. The dual luciferase assay was used to elucidate the regulation of tumor necrosis factor receptor(TNFR)-associated factor 3(TRAF3) by ssc-miR-149.Results: The analysis showed that 18 miRNAs were highly expressed in SCs and 15 miRNAs were highly expressed in germ cells. These miRNAs were predicted to mediate SC and germ cell functions. In addition, ssc-miR-149 played critical roles in SCs by targeting TRAF3.Conclusion: Our findings provide novel insights into the miRNA expression pattern and their regulatory roles of porcine SCs.
文摘Amh (anti-Müllerian hormone) is a single copy gene which is expressed strongly in Sertoli cells in the foetal testis and participates in the onset of sexual differentiation. Its promoter driving the expression of a reporter gene (d2EGFP) has been used to analyse the role of certain defined putative elements and a downstream enhancer element in gene expression. These experiments were carried out in vitro using a line of pre-pubertal mouse Sertoli cells, transienly transfected with circular DNA constructs with variously mutated promoter elements. A downstream enhancer element, situated immediately 3’ of the polyadenylation (PA) signal for Amh, has been inserted in an equivalent position in the d2EGFP construct. When the Amh promoter is unmodified, the downstream enhancer (DE) is positively associated with a large increase in EGFP expression. This is at least partly the consequence of an increased rate of expression by individual cells. Experiments using variously truncated Amh promoters indicate that an upstream region (-214 to -336) may play a minor role in facilitating enhancement. However mutation of the Wilms tumour factor-1 element, situated between the tata box and the start of translation, results in an almost complete suppression of enhancement.
基金We thank the National Natural Science Foundation of China(81273610)Research and Development Fund of Beijing University of Chinese Medicine(2019-ZFXZJJ-021)for financial support.
文摘Objective:Sertoli cells(SCs)provide physical support and material supply for germ cells and participate in the formation of blood-testis barrier.The number of SCs is directly proportional to the number of germ cells.And mature SCs ensure the growth of germ cells and the production of sperm.In this study,we explored the effect and underlying mechanism of Lycium barbarum polysaccharides(LBP)on primary SCs in young rats.Methods:Primary SCs were isolated from the testis of 20-day old rats.The cells were then treated with different concentrations of LBP.Immunocytochemistry was used to detect the expression of Ki67 and the androgen receptor(AR),and western blotting was used to detect the expression of cytokeratin-18(CK-18),AR and phosphorylated Akt(Ser473)in SCs.Results:The number of SCs increased significantly after LBP treatment,and the 100 mg/mL.LBP group had 14%more cells than the control group.The expression of Ki67 in LBP treated groups also increased significantly.LBP inhibited the expression of cytokeratin 18 in SCs.Besides,LBP increased the expression of AR on SCs and promoted the activation of Akt at the ser473 phosphorylation site.Conclusion:LBP promotes the proliferation of immature SCs in young rats and also accelerates their differentiation and maturation.This seems to be associated with activation of the Akt signaling pathway via up-regulation of AR.
文摘Objective: This study aimed to investigate the histopathological examination of the testicular biopsies in infertile males with azoospermia. The patients were referred to the Urology Department in Salah Alden Hospital. Methods: The present study was carried out from May 2017 until June 2018 and the number of the patients group was 60. The patients aged between 20 to 50 years. 20 of them were selected and subjected to histopathological examinations by taking biopsies from their testes. Results: The sertoli-cell-only syndrome (SCOS) was the most common positive histopathological finding comprising 35% of the cases. This was followed by testicular atrophy with 30%, while maturation arrest was 20%. The percentage of hypospermatogenesis was 10% and normal spermatogenesis was 5%. Conclusion: Among the 20 specimens examined, the sertoli-cell-only syndrome (SCOS) was the most common positive histopathological finding. The semen analysis and testicular biopsy provide valuable information about the etiology and the fertility potential of an individual.
基金supported in part by the National Natural Science Foundation of China(Nos.32270555 and 32072954).
文摘The phosphoinositide-3-kinase/Akt(PI3K/AKT)signaling pathway is crucial for Sertoli cell development and completing spermatogenesis.Its main role is to promote proliferation and inhibit apoptosis.Many factors activate the PI3K/AKT pathway,like hormones,such as follicle stimulating hormone(FSH),androgen,estrogen,insulin to name a few.Many of these factors have receptors inside or on the surface of Sertoli cells(SCs).This review summarizes how these hormones directly regulate the PI3K/AKT signaling pathway in SCs,which in turn affects SC proliferation and differentiation.Further,hormone-mediated PI3K/AKT signaling also stimulates SC secretion,which is essential for germ cell development,suggesting an indirect role of PI3K/AKT signaling during spermatogenesis.These functions include promoting spermatogonia proliferation and differentiation,meiosis of spermatocytes,sperm maturation,and their release.This review also provides potential hints for clinically treating male infertility issues like cryptorchidism and Sertoli cell-only syndrome.
文摘Aim: To determine the effectiveness of the ski 1, sk9 and ski 1 TNUA5 Sertoli cell lines in binding germ cells in vitro. Methods: The immortalized Sertoli cell lines sk9, ski 1 and ski 1 TNUA5 were used in co-culture experiments with germ cells in media with or without reproductive hormones and incubated for 44 h at 32℃. The number of germ cells bound to Sertoli cells was then determined and statistically analyzed. Western blot analysis and reverse transcriptasepolymerase chain reaction (RT-PCR) studies were employed to investigate the presence of cell adhesion proteins and follicle stimulating hormone (FSH) receptor, respectively. Results: No statistical difference between the number of bound step-8 spermatids and bound pre-step 8 spermatids on Sertoli cells from any of the cell lines existed. After the addition of germ cells, Sertoli ceils showed more lipid accumulation in their cytoplasm, indicating active phagocytosis. Western blot analysis in the ski I TNUA5 line indicated the expression of N-cadherin. FSH-only and testosterone-only treatments increased N-cadherin expression, regardless of germ cell addition. The addition of germ cells to the ski l TNUA5 Sertoli cells increased the expression of espin, as did the addition of FSH with germ cells. RT-PCR studies of the ski I TNUA5 cells indicated that the mRNA for FSH receptor decreased with successive passages. Conclusion: In vitro binding between isolated germ cells and sk9, skll or skll TNUA5 Sertoli cells is not feasible, and therefore these cell lines are not useful for the in vitro investigation of Sertoli-germ cell interactions and primary Sertoli cell isolates must still be used.