[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone ...[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone 14-3-3 gene from banana; then the amplified sequence was sequenced and homologically analyzed. [Result] A new cDNA homologous with 14-3-3 protein genes were obtained by RT-PCR and RACE ( rapid amplification of cDNA ends ) approaches. The full length of this cDNA was 866 bp encoding 197 amino acids. Alignment of deduced amino acid sequence with those from other plants revealed that the cDNA shared high homology with 14-3-3 protein genes from other plants, and was designated as Musa acuminata 14-3-3 gene (Ma-14-3-3d). Phylogenetic analysis reveals that Ma-14-3-3d has closer genetic relationship with those from monocotyledon species than those from other species. [Conclusion] Ma-14-3-3d belongs to the same lineage of 14-3-3 from monocotyledon.展开更多
Objective To investigate the effects of 14-3-3 protein overexpression on the 1-methyl-4-phenylpyridinium (MPP^+) induced pheochromocytoma (PC12) cell death and the potential mechanisms. Methods pcDNA3.1(+)-14-...Objective To investigate the effects of 14-3-3 protein overexpression on the 1-methyl-4-phenylpyridinium (MPP^+) induced pheochromocytoma (PC12) cell death and the potential mechanisms. Methods pcDNA3.1(+)-14-3-3 plasmids, which could be expressed in mammalian cell, were constructed and transfected into PC 12 cells with Lipofectamine 2000. The expression of 14-3-3 protein, Bcl-2 protein, and BAD protein were determined by western blot. 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, microplate reader, and flow cytometric analysis were used to measure cell viability, the caspase activity, and apoptotic ratio respectively. Results (1) The expression of 14-3-3 protein increased significantly three weeks after pcDNA3.1(+)-14-3-3 plasmids transfected into PC 12 cells. (2) MPP^+ caused a decrease of cell viability in a dose-dependent manner. At 100μmol/L MPP^+, cell viability reduced approximately 50%. (3) The caspase activity increased along with the MPP^+ concentrations rising and reached its maximum value (0.34 μmol/mg protein) at 100 μmol/L MPP*. However caspase activity decreased significantly when the MPP^+ concentration exceeded 100 μmol/L. (4) Overexpression of 14-3-3 protein decreased the apoptosis ratio of PC 12 cells treated with 100μmol/L MPP^+ from 26.5% to 8.6%. (5) Bcl-2 protein tended to decrease but BAD protein tended to increase after treatment of PC 12 cells with 100 μmol/L MPP^+. Overexpression of 14-3-3 protein significantly increased the cellular level of Bcl-2 protein and decreased that of BAD protein. Conclusion Overexpression of 14-3-3 protein may reduce MPP^+-induced apoptotic cell death in PC12 cells by up-regulating the Bcl-2 expression and down-regulating the BAD expression. These results may provide a promising target for treatment of Parkinson's disease.展开更多
Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mech...Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mechanisms. Methods The viability and apoptosis of PC 12 cells were determinded by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6′-diamidino-2-phenylindole (DAPI) staining, respectively. The expressions of 14-3-3 protein and phospholylated p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. Enzyme-linked immunosorbent assay (ELISA) was used to measure the activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Results The cell viability decreased and the number of apoptotic cells increased dramatically in MPP^+ group compared with that in Control group. HPP induced a significant increase in cell viability and a marked decrease in population of apoptotic cells of the MPP^+- treated PC 12 cells, accompanied with up-regulation of 14-3-3 protein and increase of ERK 1/2 and p38 MAPK activities. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in PC 12 cells induced by HPP. Conclusion HPP protects PC 12 cells against MPP+ toxicity by up-regulating 14-3-3 protein expression through the ERK1/2 and p38 MAPK signaling pathways.展开更多
14-3-3 is a highly conserved acidic protein family, composed of seven isoforms in mammals. 14-3-3 protein caninteract with over 200 target proteins by phosphoserine-dependent and phosphoserine-independent manners. Lit...14-3-3 is a highly conserved acidic protein family, composed of seven isoforms in mammals. 14-3-3 protein caninteract with over 200 target proteins by phosphoserine-dependent and phosphoserine-independent manners. Little isknown about the consequences of these interactions, and thus are the subjects of ongoing studies. 14-3-3 controls cellcycle, cell growth, differentiation, survival, apoptosis, migration and spreading. Recent studies have revealed newmechanisms and new functions of 14-3-3, giving us more insights on this fascinating and complex family of proteins.Of all the seven isoforms, 14-3-3σ seems to be directly involved in human cancer. 14-3-3σ itself is subject to regulationby p53 upon DNA damage and by epigenetic deregulation. Gene silencing of 14-3-3σ by CpG methylation has beenfound in many human cancer types. This suggests that therapy-targeting 14-3-3σ may be beneficial for future cancertreatment.展开更多
Objective To investigate the protective immunity against Echinococcus granulosus in mice immunized with rEg14-3-3. Methods ICR mice were subcutaneously immunized three times with rEg14-3-3, followed by the challenge w...Objective To investigate the protective immunity against Echinococcus granulosus in mice immunized with rEg14-3-3. Methods ICR mice were subcutaneously immunized three times with rEg14-3-3, followed by the challenge with Echinococcus granulosus protoscoleces intraperitoneally and then sacrificed after six months of post-challenge to detect the proliferation of splenocytes by MTT assay, and to measure the secretion of IL-2, IL-4, IL-20, and IFN -y by ELISA. The rate of reduced hydatid cyst and the levels of IgE, igG and IgG subclasses in sera were examined. Results Mice vaccinated with rEg14-3-3 and challenged with protoscoleces revealed significant protective immunity of 84.47%. ELISA analysis indicated that the immunized mice generated specific high levels of IgG and the prevailing isotypes of IgG were IgG1 and IgG2a. Splenocytes from mice immunized with rEg14-3-3 showed a significant proliferation response. The secretion of IFN-V and IL-2 increased significantly in the vaccinated mice whereas there was no significant difference in IL-4 and IL-20 levels between vaccinated and control mice. Conclusion The results indicate that the rEg24-3-3 vaccine could induce a high level of protective immunity as a promising vaccine candidate to prevent cystic echinococcosis.展开更多
To explore the differences of carbohydrate metabolism in two tomato species and discuss the possible regulation of 14-3-3 proteins on the sucrose phosphate synthase (SPS) activity, we determined the contents of solu...To explore the differences of carbohydrate metabolism in two tomato species and discuss the possible regulation of 14-3-3 proteins on the sucrose phosphate synthase (SPS) activity, we determined the contents of soluble sugar and starch through high performance liquid chromatography (HPLC). The activities of sugar-metabolizing enzymes were assayed in desalted extract, and the relative expression levels of related genes in sugar metabolism were determined though real-time RT-PCR. The results indicated that glucose and fructose were mainly accumulated during the maturation of the fruit because of the high acid invertase (AI) and neutral invertase (NI) in Micro-Tom (Solanum lycopersicum) fruit, while in Solanum chmielewskii fruit, SPS which went along with the change of sucrose content led to the rapid sucrose increase during the fruit ripening. TFT1 and TFT10, belonging to 14-3-3 protein in tomato, were likely to down-regulated SPS activity during young and intumescence period.展开更多
hPFTAIRE1 (PFTK1), a Cdc2-related protein kinase, is highly expressed in human brain. It exhibits cytoplasmic distribution in Hela cells, although it contains two nuclear localization signals (NLSs) in its N-termi...hPFTAIRE1 (PFTK1), a Cdc2-related protein kinase, is highly expressed in human brain. It exhibits cytoplasmic distribution in Hela cells, although it contains two nuclear localization signals (NLSs) in its N-terminus. To search for its substrates and regulatory components, we screened a two-hybrid library by using the full-length hPFTAIRE1 as a bait. Four 14-3-3 isoforms (β,ε,η,τ) were identified interacting with the hPFTAIRE1. We found a putative 14-3-3 binding consensus motif(RHSSPSS) in the hPFTAIRE 1, which overlapped with its second NLS. Deletion of the RHSSPSS motif or substitution of Ser^119 gwithAla in the conserved binding motif abolished the specific interaction between the hPFTAIRE 1 and the 14-3 -3 proteins. The mutant S 120A hPFTAIRE1 also showed a weak interaction to the 14-3-3 proteins. The results suggested that the Ser^119 is crucial for the interaction between hPFTAIREI and the 14-3-3 proteins. All the hPFTAIRE1 mutants distributed in cytoplasm of Hela cells and human neuroblastoma cells (SH-SY5Y) when fused to the C-terminus of a green fluorescent protein (GFP), indicating that binding with the 14-3-3 proteins does not contribute to the subcellular localization of the hPFTAIRE1, although the binding may be involved in its signaling regulation.展开更多
Seven different, but highly conserved 14-3-3 proteins are involved in diverse signaling pathways in human cells. It isunclear how the 14-3-3σ isoform, a transcriptional target of p53, exerts its inhibitory effect on ...Seven different, but highly conserved 14-3-3 proteins are involved in diverse signaling pathways in human cells. It isunclear how the 14-3-3σ isoform, a transcriptional target of p53, exerts its inhibitory effect on the cell cycle in thepresence of other 14-3-3 isoforms, which are constitutively expressed at high levels. In order to identify structuraldifferences between the 14-3-3 isoforms, we solved the crystal structure of the human 14-3-3σ protein at a resolutionof 2.8 ? and compared it to the known structures of 14-3-3ζ and 14-3-3τ. The global architecture of the 14-3-3σ foldis similar to the previously determined structures of 14-3-3ζ and 14-3-3τ: two 14-3-3σ molecules form a cup-shapeddimer. Significant differences between these 14-3-3 isoforms were detected adjacent to the amphipathic groove, whichmediates the binding to phosphorylated consensus motifs in 14-3-3-ligands. Another specificity determining region islocalized between amino-acids 203 to 215. These differences presumably select for the interaction with specific ligands,which may explain the different biological functions of the respective 14-3-3 isoforms. Furthermore, the two 14-3-3σmolecules forming a dimer differ by the spatial position of the ninth helix, which is shifted to the inside of the ligandinteraction surface, thus indicating adaptability of this part of the molecule. In addition, 5 non-conserved residues arelocated at the interface between two 14-3-3σ proteins forming a dimer and represent candidate determinants of homo-and hetero-dimerization specificity. The structural differences among the 14-3-3 isoforms described here presumablycontribute to isoform-specific interactions and functions.展开更多
BACKGROUND: The progressive degeneration of dopaminergic neurons in Parkinson's disease is associated with an activated glial reaction, combined with an inflammatory process. These responses lead to the production o...BACKGROUND: The progressive degeneration of dopaminergic neurons in Parkinson's disease is associated with an activated glial reaction, combined with an inflammatory process. These responses lead to the production of cytokines, such as interferon- γ, tumor necrosis factor- α (TNF- α ), and interleukin-1 β. In addition, 14-3-3 protein is a component of Lewy bodies in Parkinson's disease. OBJECTIVE: To observe the expression of 14-3-3 γ and ζ protein, as well as TNF-α, in mouse microglia, as well as changes after lipopolysaccharide (LPS) activation. To investigate possible mechanisms of dopaminergic neuronal injury due to activated microglia. To and clarify the immune response mechanisms of Parkinson's disease. DESIGN: Randomized controlled observation, cell study.SETTING: Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: The BV-2 immortalized murine microglia cell line was purchased from China Unit cell center. LPS was provided by Sigma Company. Cell cultures were purchased from Gibco. Phospho-(Ser) 14-3-3 binding motif antibody was purchased from Santa Cruz Biotechnologies. FITC was provided by Linfei Biotechnology, Wuhan, China. TNF- α ELISA was provided by Jingmei Biotech Co, Wuhan, China. The flow cytometer was provided by Becton Dickinson, Canada. METHODS: The present experiment was performed at the Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology from April to December 2006. The microglial cell line, BV-2, was cultured in vitro and stimulated with LPS for 2, 6, 12, and 24 hours. BV-2 cultures without LPS were used as controls. MAIN OUTCOME MEASURES: Expression of 14-3-3 γ protein was detected by flow cytometry. 14-3-3 ζ percentage expression and the mean fluorescence intensity was detected by immunofluorescence. TNF- α expression was detected by ELISA. RESULTS: 14-3-3 γ protein expression analysis: following LPS-induction in BV-2 cells, the fluorescence intensity of the 14-3-3 γ proteins gradually decreased. The 12 and 24 hours groups exhibited significantly lower expression than the normal control group (P 〈 0.05). 14-3-3 ζ percentage expression and the mean fluorescence intensity: the percentage of 14-3-3 ζ protein expression gradually decreased with LPS stimulation. The mean fluorescence intensity from the 6, 12, and 24 hours groups was significantly less than the control group (P 〈 0.05). TNF-α expression: resting BV-2 cells did not express TNF-α. Following 2 hours of LPS stimulation, TNF-α was highly expressed in BV-2 cells, but decreased again by 24 hours. CONCLUSION: Dopaminergic neuronal injury, due to activated microglial cells, might be related to the participation of 14-3-3 proteins and the release of TNF-α.展开更多
文摘[Objective] The aim of the study is to clone and analyze the gene encoding 14-3-3 protein from banana. [Method] Combined with PCR amplification, RACE (rapid amplification of cDNA ends) technique was employed to clone 14-3-3 gene from banana; then the amplified sequence was sequenced and homologically analyzed. [Result] A new cDNA homologous with 14-3-3 protein genes were obtained by RT-PCR and RACE ( rapid amplification of cDNA ends ) approaches. The full length of this cDNA was 866 bp encoding 197 amino acids. Alignment of deduced amino acid sequence with those from other plants revealed that the cDNA shared high homology with 14-3-3 protein genes from other plants, and was designated as Musa acuminata 14-3-3 gene (Ma-14-3-3d). Phylogenetic analysis reveals that Ma-14-3-3d has closer genetic relationship with those from monocotyledon species than those from other species. [Conclusion] Ma-14-3-3d belongs to the same lineage of 14-3-3 from monocotyledon.
基金supported by National Natural Science Foundation of China(No:30570627).
文摘Objective To investigate the effects of 14-3-3 protein overexpression on the 1-methyl-4-phenylpyridinium (MPP^+) induced pheochromocytoma (PC12) cell death and the potential mechanisms. Methods pcDNA3.1(+)-14-3-3 plasmids, which could be expressed in mammalian cell, were constructed and transfected into PC 12 cells with Lipofectamine 2000. The expression of 14-3-3 protein, Bcl-2 protein, and BAD protein were determined by western blot. 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, microplate reader, and flow cytometric analysis were used to measure cell viability, the caspase activity, and apoptotic ratio respectively. Results (1) The expression of 14-3-3 protein increased significantly three weeks after pcDNA3.1(+)-14-3-3 plasmids transfected into PC 12 cells. (2) MPP^+ caused a decrease of cell viability in a dose-dependent manner. At 100μmol/L MPP^+, cell viability reduced approximately 50%. (3) The caspase activity increased along with the MPP^+ concentrations rising and reached its maximum value (0.34 μmol/mg protein) at 100 μmol/L MPP*. However caspase activity decreased significantly when the MPP^+ concentration exceeded 100 μmol/L. (4) Overexpression of 14-3-3 protein decreased the apoptosis ratio of PC 12 cells treated with 100μmol/L MPP^+ from 26.5% to 8.6%. (5) Bcl-2 protein tended to decrease but BAD protein tended to increase after treatment of PC 12 cells with 100 μmol/L MPP^+. Overexpression of 14-3-3 protein significantly increased the cellular level of Bcl-2 protein and decreased that of BAD protein. Conclusion Overexpression of 14-3-3 protein may reduce MPP^+-induced apoptotic cell death in PC12 cells by up-regulating the Bcl-2 expression and down-regulating the BAD expression. These results may provide a promising target for treatment of Parkinson's disease.
基金the National Natural Science Foundation of China (No. 30570627)
文摘Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mechanisms. Methods The viability and apoptosis of PC 12 cells were determinded by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6′-diamidino-2-phenylindole (DAPI) staining, respectively. The expressions of 14-3-3 protein and phospholylated p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. Enzyme-linked immunosorbent assay (ELISA) was used to measure the activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Results The cell viability decreased and the number of apoptotic cells increased dramatically in MPP^+ group compared with that in Control group. HPP induced a significant increase in cell viability and a marked decrease in population of apoptotic cells of the MPP^+- treated PC 12 cells, accompanied with up-regulation of 14-3-3 protein and increase of ERK 1/2 and p38 MAPK activities. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in PC 12 cells induced by HPP. Conclusion HPP protects PC 12 cells against MPP+ toxicity by up-regulating 14-3-3 protein expression through the ERK1/2 and p38 MAPK signaling pathways.
文摘14-3-3 is a highly conserved acidic protein family, composed of seven isoforms in mammals. 14-3-3 protein caninteract with over 200 target proteins by phosphoserine-dependent and phosphoserine-independent manners. Little isknown about the consequences of these interactions, and thus are the subjects of ongoing studies. 14-3-3 controls cellcycle, cell growth, differentiation, survival, apoptosis, migration and spreading. Recent studies have revealed newmechanisms and new functions of 14-3-3, giving us more insights on this fascinating and complex family of proteins.Of all the seven isoforms, 14-3-3σ seems to be directly involved in human cancer. 14-3-3σ itself is subject to regulationby p53 upon DNA damage and by epigenetic deregulation. Gene silencing of 14-3-3σ by CpG methylation has beenfound in many human cancer types. This suggests that therapy-targeting 14-3-3σ may be beneficial for future cancertreatment.
基金supported by National Natural Science Foundation of China (No.30260105 and No.30660176)
文摘Objective To investigate the protective immunity against Echinococcus granulosus in mice immunized with rEg14-3-3. Methods ICR mice were subcutaneously immunized three times with rEg14-3-3, followed by the challenge with Echinococcus granulosus protoscoleces intraperitoneally and then sacrificed after six months of post-challenge to detect the proliferation of splenocytes by MTT assay, and to measure the secretion of IL-2, IL-4, IL-20, and IFN -y by ELISA. The rate of reduced hydatid cyst and the levels of IgE, igG and IgG subclasses in sera were examined. Results Mice vaccinated with rEg14-3-3 and challenged with protoscoleces revealed significant protective immunity of 84.47%. ELISA analysis indicated that the immunized mice generated specific high levels of IgG and the prevailing isotypes of IgG were IgG1 and IgG2a. Splenocytes from mice immunized with rEg14-3-3 showed a significant proliferation response. The secretion of IFN-V and IL-2 increased significantly in the vaccinated mice whereas there was no significant difference in IL-4 and IL-20 levels between vaccinated and control mice. Conclusion The results indicate that the rEg24-3-3 vaccine could induce a high level of protective immunity as a promising vaccine candidate to prevent cystic echinococcosis.
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2011BAD12B03)
文摘To explore the differences of carbohydrate metabolism in two tomato species and discuss the possible regulation of 14-3-3 proteins on the sucrose phosphate synthase (SPS) activity, we determined the contents of soluble sugar and starch through high performance liquid chromatography (HPLC). The activities of sugar-metabolizing enzymes were assayed in desalted extract, and the relative expression levels of related genes in sugar metabolism were determined though real-time RT-PCR. The results indicated that glucose and fructose were mainly accumulated during the maturation of the fruit because of the high acid invertase (AI) and neutral invertase (NI) in Micro-Tom (Solanum lycopersicum) fruit, while in Solanum chmielewskii fruit, SPS which went along with the change of sucrose content led to the rapid sucrose increase during the fruit ripening. TFT1 and TFT10, belonging to 14-3-3 protein in tomato, were likely to down-regulated SPS activity during young and intumescence period.
基金grants from National Natural Science Foundation of China (Nos. 30400073 ,30330010).
文摘hPFTAIRE1 (PFTK1), a Cdc2-related protein kinase, is highly expressed in human brain. It exhibits cytoplasmic distribution in Hela cells, although it contains two nuclear localization signals (NLSs) in its N-terminus. To search for its substrates and regulatory components, we screened a two-hybrid library by using the full-length hPFTAIRE1 as a bait. Four 14-3-3 isoforms (β,ε,η,τ) were identified interacting with the hPFTAIRE1. We found a putative 14-3-3 binding consensus motif(RHSSPSS) in the hPFTAIRE 1, which overlapped with its second NLS. Deletion of the RHSSPSS motif or substitution of Ser^119 gwithAla in the conserved binding motif abolished the specific interaction between the hPFTAIRE 1 and the 14-3 -3 proteins. The mutant S 120A hPFTAIRE1 also showed a weak interaction to the 14-3-3 proteins. The results suggested that the Ser^119 is crucial for the interaction between hPFTAIREI and the 14-3-3 proteins. All the hPFTAIRE1 mutants distributed in cytoplasm of Hela cells and human neuroblastoma cells (SH-SY5Y) when fused to the C-terminus of a green fluorescent protein (GFP), indicating that binding with the 14-3-3 proteins does not contribute to the subcellular localization of the hPFTAIRE1, although the binding may be involved in its signaling regulation.
文摘Seven different, but highly conserved 14-3-3 proteins are involved in diverse signaling pathways in human cells. It isunclear how the 14-3-3σ isoform, a transcriptional target of p53, exerts its inhibitory effect on the cell cycle in thepresence of other 14-3-3 isoforms, which are constitutively expressed at high levels. In order to identify structuraldifferences between the 14-3-3 isoforms, we solved the crystal structure of the human 14-3-3σ protein at a resolutionof 2.8 ? and compared it to the known structures of 14-3-3ζ and 14-3-3τ. The global architecture of the 14-3-3σ foldis similar to the previously determined structures of 14-3-3ζ and 14-3-3τ: two 14-3-3σ molecules form a cup-shapeddimer. Significant differences between these 14-3-3 isoforms were detected adjacent to the amphipathic groove, whichmediates the binding to phosphorylated consensus motifs in 14-3-3-ligands. Another specificity determining region islocalized between amino-acids 203 to 215. These differences presumably select for the interaction with specific ligands,which may explain the different biological functions of the respective 14-3-3 isoforms. Furthermore, the two 14-3-3σmolecules forming a dimer differ by the spatial position of the ninth helix, which is shifted to the inside of the ligandinteraction surface, thus indicating adaptability of this part of the molecule. In addition, 5 non-conserved residues arelocated at the interface between two 14-3-3σ proteins forming a dimer and represent candidate determinants of homo-and hetero-dimerization specificity. The structural differences among the 14-3-3 isoforms described here presumablycontribute to isoform-specific interactions and functions.
文摘BACKGROUND: The progressive degeneration of dopaminergic neurons in Parkinson's disease is associated with an activated glial reaction, combined with an inflammatory process. These responses lead to the production of cytokines, such as interferon- γ, tumor necrosis factor- α (TNF- α ), and interleukin-1 β. In addition, 14-3-3 protein is a component of Lewy bodies in Parkinson's disease. OBJECTIVE: To observe the expression of 14-3-3 γ and ζ protein, as well as TNF-α, in mouse microglia, as well as changes after lipopolysaccharide (LPS) activation. To investigate possible mechanisms of dopaminergic neuronal injury due to activated microglia. To and clarify the immune response mechanisms of Parkinson's disease. DESIGN: Randomized controlled observation, cell study.SETTING: Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: The BV-2 immortalized murine microglia cell line was purchased from China Unit cell center. LPS was provided by Sigma Company. Cell cultures were purchased from Gibco. Phospho-(Ser) 14-3-3 binding motif antibody was purchased from Santa Cruz Biotechnologies. FITC was provided by Linfei Biotechnology, Wuhan, China. TNF- α ELISA was provided by Jingmei Biotech Co, Wuhan, China. The flow cytometer was provided by Becton Dickinson, Canada. METHODS: The present experiment was performed at the Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology from April to December 2006. The microglial cell line, BV-2, was cultured in vitro and stimulated with LPS for 2, 6, 12, and 24 hours. BV-2 cultures without LPS were used as controls. MAIN OUTCOME MEASURES: Expression of 14-3-3 γ protein was detected by flow cytometry. 14-3-3 ζ percentage expression and the mean fluorescence intensity was detected by immunofluorescence. TNF- α expression was detected by ELISA. RESULTS: 14-3-3 γ protein expression analysis: following LPS-induction in BV-2 cells, the fluorescence intensity of the 14-3-3 γ proteins gradually decreased. The 12 and 24 hours groups exhibited significantly lower expression than the normal control group (P 〈 0.05). 14-3-3 ζ percentage expression and the mean fluorescence intensity: the percentage of 14-3-3 ζ protein expression gradually decreased with LPS stimulation. The mean fluorescence intensity from the 6, 12, and 24 hours groups was significantly less than the control group (P 〈 0.05). TNF-α expression: resting BV-2 cells did not express TNF-α. Following 2 hours of LPS stimulation, TNF-α was highly expressed in BV-2 cells, but decreased again by 24 hours. CONCLUSION: Dopaminergic neuronal injury, due to activated microglial cells, might be related to the participation of 14-3-3 proteins and the release of TNF-α.