With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat...With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.展开更多
Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(S...Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(SFC)under 5G networks,this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment(MADDPG-SD).Initially,an optimization model is devised to enhance the request acceptance rate,minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case.Subsequently,we model the dynamic problem as a Markov decision process(MDP),facilitating adaptation to the evolving states of network resources.Finally,by allocating SFCs to different agents and adopting a collaborative deployment strategy,each agent aims to maximize the request acceptance rate or minimize latency and costs.These agents learn strategies from historical data of virtual network functions in SFCs to guide server node selection,and achieve approximately optimal SFC deployment strategies through a cooperative framework of centralized training and distributed execution.Experimental simulation results indicate that the proposed method,while simultaneously meeting performance requirements and resource capacity constraints,has effectively increased the acceptance rate of requests compared to the comparative algorithms,reducing the end-to-end latency by 4.942%and the deployment cost by 8.045%.展开更多
Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat t...Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.展开更多
Animal husbandry is the pillar industry in some ethnic areas of China.However,the communication/networking infrastructure in these areas is often underdeveloped,thus the difficulty in centralized management,and challe...Animal husbandry is the pillar industry in some ethnic areas of China.However,the communication/networking infrastructure in these areas is often underdeveloped,thus the difficulty in centralized management,and challenges for the effective monitoring.Considering the dynamics of the field monitoring environment,as well as the diversity and mobility of monitoring targets,traditional WSN(Wireless Sensor Networks)or IoT(Internet of Things)is difficult to meet the surveillance needs.Mobile surveillance that features the collaboration of various functions(camera,sensing,image recognition,etc.)deployed on mobile devices is desirable in a volatile wireless environment.This paper proposes the service function chaining for mobile surveillance of animal husbandry,which orchestrates multi-path multifunction(MPMF)chains to help mobile devices to collaborate in complex surveillance tasks,provide backup chains in case the primary service function chain fails due to mobility,signal strength,obstacle,etc.,and make up for the defects of difficult deployment of monitoring facilities in ethnic areas.MPMF algorithmmodels both mobile devices and various functions deployed on them as abstract graph nodes,so that chains that are required to traverse various functions and hosting mobile devices can be orchestrated in a single graphbased query through modified and adapted Dijkstra-like algorithms,with their cost ordered automatically.Experiment results show that the proposed MPMF algorithm finds multiple least-costly chains that traverse demanded functions in a timely fashion on Raspberry Pi-equipped mobile devices.展开更多
Service function chains(SFC)mapping takes the responsibility for managing virtual network functions(VNFs).In SFC mapping,existing solutions duplicate VNFs with redundant instances to provide high availability in respo...Service function chains(SFC)mapping takes the responsibility for managing virtual network functions(VNFs).In SFC mapping,existing solutions duplicate VNFs with redundant instances to provide high availability in response to failures.However,as a compromise,these solutions result in high resource consumption due to device maintenance.In this paper,we propose a novel method named dynamic backup sharing(DBS)that allows SFCs to dynamically share backups to reduce resource consumption.DBS formulates the problem of sharing backups among different VNFs as an integer linear programming(ILP).Thereafter,we design a novel online algorithm based on dynamic programming to solve the problem.The experimental results indicate that DBS outperforms state-ofthe-art works by reducing resource consumption and improving the number of accepted requests.展开更多
Software Defined Satellite Networks(SDSN) are proposed to solve the problems in traditional satellite networks, such as time-consuming configuration and inflexible traffic scheduling. The emerging application of small...Software Defined Satellite Networks(SDSN) are proposed to solve the problems in traditional satellite networks, such as time-consuming configuration and inflexible traffic scheduling. The emerging application of small satellite and research of SDSN make it possible for satellite networks to provide flexible network services. Service Function Chain(SFC) can satisfy this need. In this paper, we are motivated to investigate applying SFC in the small satellite-based SDSN for service delivery. We introduce the structure of the multi-layer constellation-based SDSN. Then, we describe two deployment patterns of SFC in SDSN, the Multi-Domain(MD) pattern and the Satellite Formation(SF) pattern. We propose two algorithms, SFP-MD, and SFP-SF, to calculate the Service Function Path(SFP). We implement the algorithms and conduct contrast experiments in our prototype. Finally, we summarize the applicable conditions of two deployment patterns according to the experimental results in terms of hops, delay, and packet loss rate.展开更多
Network function virtualization is a new network concept that moves network functions from dedicated hardware to software-defined applications running on standard high volume severs. In order to accomplish network ser...Network function virtualization is a new network concept that moves network functions from dedicated hardware to software-defined applications running on standard high volume severs. In order to accomplish network services, traffic flows are usually processed by a list of network functions in sequence which is defined by service function chain. By incorporating network function virtualization in inter-data center(DC) network, we can use the network resources intelligently and deploy network services faster. However, orchestrating service function chains across multiple data centers will incur high deployment cost, including the inter-data center bandwidth cost, virtual network function cost and the intra-data center bandwidth cost. In this paper, we orchestrate SFCs across multiple data centers, with a goal to minimize the overall cost. An integer linear programming(ILP) model is formulated and we provide a meta-heuristic algorithm named GBAO which contains three modules to solve it. We implemented our algorithm in Python and performed side-by-side comparison with prior algorithms. Simulation results show that our proposed algorithm reduces the overall cost by at least 21.4% over the existing algorithms for accommodating the same service function chain requests.展开更多
Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The s...Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration.展开更多
Software defined network(SDN)and network function virtualization(NFV)have become a new paradigm of a new generation of network architecture.SDN and NFV can effectively improve the flexibility of deploying and managing...Software defined network(SDN)and network function virtualization(NFV)have become a new paradigm of a new generation of network architecture.SDN and NFV can effectively improve the flexibility of deploying and managing service function chains(SFCs).By combining SDN and NFV and applying them to the resource orchestration problem of SFC deployment,the three-tier architecture consisting of SDN controller,network function virtualization and physical underlying computing resource layer in the process of heterogeneous network resource mapping is considered.And an optimization algorithm for active control resources based on SDN and NFV is proposed.Firstly,the user’s utility is modeled by the multistandard aggregated multi-criteria utility algorithm,and the optimization goal is transformed into the problem of maximizing the user’s utility.Then the controller,based on the algorithm’s prediction of the future state and realtime monitoring of the network utilization,makes decisions and issues control commands for the arriving SFC requests,based on which it occupies the underlying resources held by the virtualized network function(VNF).The simulation results show that,compared with the static timing resource allocation algorithm,the active control resource deployment algorithm proposed in the article has better performance in terms of resource utilization,acceptance rate,and user creation utility.展开更多
The development of Fifth-Generation(5G)mobile communication technology has remarkably promoted the spread of the Internet of Things(IoT)applications.As a promising paradigm for IoT,edge computing can process the amoun...The development of Fifth-Generation(5G)mobile communication technology has remarkably promoted the spread of the Internet of Things(IoT)applications.As a promising paradigm for IoT,edge computing can process the amount of data generated by mobile intelligent devices in less time response.Network Function Virtualization(NFV)that decouples network functions from dedicated hardware is an important architecture to implement edge computing,deploying heterogeneous Virtual Network Functions(VNF)(such as computer vision,natural language processing,intelligent control,etc.)on the edge service nodes.With the NFV MANO(Management and Orchestration)framework,a Service Function Chain(SFC)that contains a set of ordered VNFs can be constructed and placed in the network to offer a customized network service.However,the procedure of NFV orchestration faces a technical challenge in minimizing the network cost of VNF placement due to the complexity of the changing effect of traffic volume and the dependency on theVNFrelationship.To this end,we jointly optimize SFC design and VNF placement to minimize resource cost while taking account of VNF dependency and traffic volume scaling.First,the problem is formulated as an Integer Linear Programming(ILP)model and proved NPhard by reduction from Hamiltonian Cycle problem.Then we proposed an efficient heuristic algorithm called Traffic Aware and Interdependent VNF Placement(TAIVP)to solve the problem.Compared with the benchmark algorithms,emulation results show that our algorithm can reduce network cost by 10.2%and increase service request acceptance rate by 7.6%on average.展开更多
The combination of network function virtualization and software-defined networking allows various network functions to process flows according to their characteristics and requirements.Due to the highly dynamic nature...The combination of network function virtualization and software-defined networking allows various network functions to process flows according to their characteristics and requirements.Due to the highly dynamic nature of the workload,the network infrastructure needs to properly schedule the underlying resources in order to respond to workload changes in a timely manner.However,the existing NFV platform lacks a comprehensive solution for how to scale under workload variation,which may seriously hurt the overall system performance.To improve the scalability of the NFV platform and ensure consistent high performance under dynamic workloads,we propose AdaptNF,a novel NFV platform designed to support a combination of course-grained and fine-grained resource scheduling strategies.To deal with resource imbalance,which is the essential scheduling problem that leads to insufficient NFV performance,AdaptNF adopts a novel algorithm that can efficiently balance the workload among multiple network function instances through stateless flow migration.Our controlled experiments show that the AdaptNF scheme can optimize resource allocation and ensure outstanding performance after scaling.In terms of network throughput and latency,AdaptNF significantly improves the performance of the underlying NFV platform.展开更多
Security service function chaining(SFC)based on software-defined networking(SDN)and network function virtualization(NFV)technology allows traffic to be forwarded sequentially among different security service functions...Security service function chaining(SFC)based on software-defined networking(SDN)and network function virtualization(NFV)technology allows traffic to be forwarded sequentially among different security service functions to achieve a combination of security functions.Security SFC can be deployed according to requirements,but the current SFC is not flexible enough and lacks an effective feedback mechanism.The SFC is not traffic aware and the changes of traffic may cause the previously deployed security SFC to be invalid.How to establish a closed-loop mechanism to enhance the adaptive capability of the security SFC to malicious traffic has become an important issue.Our contribution is threefold.First,we propose a secure SFC path selection framework.The framework can accept the feedback results of traffic and security service functions in SFC,and dynamically select the opti-mal path for SFC based on the feedback results.It also realizes the automatic deployment of paths,forming a complete closed loop.Second,we expand the protocol of SFC to realize the security SFC with branching path,which improve flexibility of security SFC.Third,we propose a deep reinforcement learning-based dynamic path selection method for security SFC.It infers the optimal branching path by analyzing feedback from the security SFC.We have experimented with Distributed Denial of Service(DDoS)attack detection modules as security service functions.Experimental results show that our proposed method can dynamically select the optimal branching path for a security SFC based on traffic features and the state of the SFC.And it improves the accuracy of the overall malicious traffic detection of the security SFC and significantly reduces the latency and overall load of the SFC.展开更多
为解决航空信息网络场景下业务突发、拓扑结构动态变化以及资源有限所带来的资源利用效率低下问题,针对服务功能链请求(Service Function Chain Requirement,SFCR)高效调度的难题,提出一种网络功能虚拟化的服务功能链调度算法。算法依据...为解决航空信息网络场景下业务突发、拓扑结构动态变化以及资源有限所带来的资源利用效率低下问题,针对服务功能链请求(Service Function Chain Requirement,SFCR)高效调度的难题,提出一种网络功能虚拟化的服务功能链调度算法。算法依据SFCR与平台的相关性进行映射,提高服务器处理效率并有效减少虚拟网络功能实例化数量及整合平台资源;综合考虑时延和流量影响对网络功能实例进行整合迁移,降低网络能耗同时提升网络资源利用率。仿真结果表明,在满足时延需求条件下,新方法在运行平台数量、SFCR接受率、网络资源消耗等方面具有较好的优化性能,适用于解决航空信息网络场景下的SFCR调度问题。展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Open project of Satellite Internet Key Laboratory in 2022(Project 3:Research on Spaceborne Lightweight Core Network and Intelligent Collaboration)the Beijing Natural Science Foundation under grant number L212003.
文摘With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.
基金The financial support fromthe Major Science and Technology Programs inHenan Province(Grant No.241100210100)National Natural Science Foundation of China(Grant No.62102372)+3 种基金Henan Provincial Department of Science and Technology Research Project(Grant No.242102211068)Henan Provincial Department of Science and Technology Research Project(Grant No.232102210078)the Stabilization Support Program of The Shenzhen Science and Technology Innovation Commission(Grant No.20231130110921001)the Key Scientific Research Project of Higher Education Institutions of Henan Province(Grant No.24A520042)is acknowledged.
文摘Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(SFC)under 5G networks,this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment(MADDPG-SD).Initially,an optimization model is devised to enhance the request acceptance rate,minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case.Subsequently,we model the dynamic problem as a Markov decision process(MDP),facilitating adaptation to the evolving states of network resources.Finally,by allocating SFCs to different agents and adopting a collaborative deployment strategy,each agent aims to maximize the request acceptance rate or minimize latency and costs.These agents learn strategies from historical data of virtual network functions in SFCs to guide server node selection,and achieve approximately optimal SFC deployment strategies through a cooperative framework of centralized training and distributed execution.Experimental simulation results indicate that the proposed method,while simultaneously meeting performance requirements and resource capacity constraints,has effectively increased the acceptance rate of requests compared to the comparative algorithms,reducing the end-to-end latency by 4.942%and the deployment cost by 8.045%.
基金funded by the National Natural Science Foundation of China under Grant 52177074.
文摘Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.
基金This research was partially supported by the National Key Research and Development Program of China(2018YFC1507005)China Postdoctoral Science Foundation(2018M643448)+1 种基金Sichuan Science and Technology Program(2020YFG0189)Fundamental Research Funds for the Central Universities,Southwest Minzu University(2020NQN18).
文摘Animal husbandry is the pillar industry in some ethnic areas of China.However,the communication/networking infrastructure in these areas is often underdeveloped,thus the difficulty in centralized management,and challenges for the effective monitoring.Considering the dynamics of the field monitoring environment,as well as the diversity and mobility of monitoring targets,traditional WSN(Wireless Sensor Networks)or IoT(Internet of Things)is difficult to meet the surveillance needs.Mobile surveillance that features the collaboration of various functions(camera,sensing,image recognition,etc.)deployed on mobile devices is desirable in a volatile wireless environment.This paper proposes the service function chaining for mobile surveillance of animal husbandry,which orchestrates multi-path multifunction(MPMF)chains to help mobile devices to collaborate in complex surveillance tasks,provide backup chains in case the primary service function chain fails due to mobility,signal strength,obstacle,etc.,and make up for the defects of difficult deployment of monitoring facilities in ethnic areas.MPMF algorithmmodels both mobile devices and various functions deployed on them as abstract graph nodes,so that chains that are required to traverse various functions and hosting mobile devices can be orchestrated in a single graphbased query through modified and adapted Dijkstra-like algorithms,with their cost ordered automatically.Experiment results show that the proposed MPMF algorithm finds multiple least-costly chains that traverse demanded functions in a timely fashion on Raspberry Pi-equipped mobile devices.
基金This work is supported by the National Key R&D Program of China(2018YFB1800601)the Key R&D Program of Zhejiang Province(2021C01036,2020C01021)the Fundamental Research Funds for the Central Universities(Zhejiang University NGICS Platform:ZJUNGICS2021021).
文摘Service function chains(SFC)mapping takes the responsibility for managing virtual network functions(VNFs).In SFC mapping,existing solutions duplicate VNFs with redundant instances to provide high availability in response to failures.However,as a compromise,these solutions result in high resource consumption due to device maintenance.In this paper,we propose a novel method named dynamic backup sharing(DBS)that allows SFCs to dynamically share backups to reduce resource consumption.DBS formulates the problem of sharing backups among different VNFs as an integer linear programming(ILP).Thereafter,we design a novel online algorithm based on dynamic programming to solve the problem.The experimental results indicate that DBS outperforms state-ofthe-art works by reducing resource consumption and improving the number of accepted requests.
基金supported in part by NSFC of China under Grant No.61232017National Basic Research Program of China(“973 program”)under Grant No.2013CB329101+1 种基金Fundamental Research Funds for the Central Universities under Grant No.2016YJS026NSAF of China under Grant No.U1530118
文摘Software Defined Satellite Networks(SDSN) are proposed to solve the problems in traditional satellite networks, such as time-consuming configuration and inflexible traffic scheduling. The emerging application of small satellite and research of SDSN make it possible for satellite networks to provide flexible network services. Service Function Chain(SFC) can satisfy this need. In this paper, we are motivated to investigate applying SFC in the small satellite-based SDSN for service delivery. We introduce the structure of the multi-layer constellation-based SDSN. Then, we describe two deployment patterns of SFC in SDSN, the Multi-Domain(MD) pattern and the Satellite Formation(SF) pattern. We propose two algorithms, SFP-MD, and SFP-SF, to calculate the Service Function Path(SFP). We implement the algorithms and conduct contrast experiments in our prototype. Finally, we summarize the applicable conditions of two deployment patterns according to the experimental results in terms of hops, delay, and packet loss rate.
基金supported by the National Natural Science Foundation of China(61501044)
文摘Network function virtualization is a new network concept that moves network functions from dedicated hardware to software-defined applications running on standard high volume severs. In order to accomplish network services, traffic flows are usually processed by a list of network functions in sequence which is defined by service function chain. By incorporating network function virtualization in inter-data center(DC) network, we can use the network resources intelligently and deploy network services faster. However, orchestrating service function chains across multiple data centers will incur high deployment cost, including the inter-data center bandwidth cost, virtual network function cost and the intra-data center bandwidth cost. In this paper, we orchestrate SFCs across multiple data centers, with a goal to minimize the overall cost. An integer linear programming(ILP) model is formulated and we provide a meta-heuristic algorithm named GBAO which contains three modules to solve it. We implemented our algorithm in Python and performed side-by-side comparison with prior algorithms. Simulation results show that our proposed algorithm reduces the overall cost by at least 21.4% over the existing algorithms for accommodating the same service function chain requests.
文摘Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration.
基金This work was supported by the National Natural Science Foundation of China(61871058).
文摘Software defined network(SDN)and network function virtualization(NFV)have become a new paradigm of a new generation of network architecture.SDN and NFV can effectively improve the flexibility of deploying and managing service function chains(SFCs).By combining SDN and NFV and applying them to the resource orchestration problem of SFC deployment,the three-tier architecture consisting of SDN controller,network function virtualization and physical underlying computing resource layer in the process of heterogeneous network resource mapping is considered.And an optimization algorithm for active control resources based on SDN and NFV is proposed.Firstly,the user’s utility is modeled by the multistandard aggregated multi-criteria utility algorithm,and the optimization goal is transformed into the problem of maximizing the user’s utility.Then the controller,based on the algorithm’s prediction of the future state and realtime monitoring of the network utilization,makes decisions and issues control commands for the arriving SFC requests,based on which it occupies the underlying resources held by the virtualized network function(VNF).The simulation results show that,compared with the static timing resource allocation algorithm,the active control resource deployment algorithm proposed in the article has better performance in terms of resource utilization,acceptance rate,and user creation utility.
基金supported in part by the Open Research Projects of Zhejiang Lab(No.2021LC0AB04)in part by the National Natural Science Foundation of China(NSFC)(Nos.62171085,62001087,U20A20156,and 61871097).
文摘The development of Fifth-Generation(5G)mobile communication technology has remarkably promoted the spread of the Internet of Things(IoT)applications.As a promising paradigm for IoT,edge computing can process the amount of data generated by mobile intelligent devices in less time response.Network Function Virtualization(NFV)that decouples network functions from dedicated hardware is an important architecture to implement edge computing,deploying heterogeneous Virtual Network Functions(VNF)(such as computer vision,natural language processing,intelligent control,etc.)on the edge service nodes.With the NFV MANO(Management and Orchestration)framework,a Service Function Chain(SFC)that contains a set of ordered VNFs can be constructed and placed in the network to offer a customized network service.However,the procedure of NFV orchestration faces a technical challenge in minimizing the network cost of VNF placement due to the complexity of the changing effect of traffic volume and the dependency on theVNFrelationship.To this end,we jointly optimize SFC design and VNF placement to minimize resource cost while taking account of VNF dependency and traffic volume scaling.First,the problem is formulated as an Integer Linear Programming(ILP)model and proved NPhard by reduction from Hamiltonian Cycle problem.Then we proposed an efficient heuristic algorithm called Traffic Aware and Interdependent VNF Placement(TAIVP)to solve the problem.Compared with the benchmark algorithms,emulation results show that our algorithm can reduce network cost by 10.2%and increase service request acceptance rate by 7.6%on average.
基金supported by the Guangdong Province Key Area R&D Program under grant No.2018B010113001National Key Research and Development Program of China under Grant No.2018YFB1804704+1 种基金National Natural Science Foundation of China under grant No.61902171the Shenzhen Key Lab of Software Defined Networking under grant No.ZDSYS20140509172959989.
文摘The combination of network function virtualization and software-defined networking allows various network functions to process flows according to their characteristics and requirements.Due to the highly dynamic nature of the workload,the network infrastructure needs to properly schedule the underlying resources in order to respond to workload changes in a timely manner.However,the existing NFV platform lacks a comprehensive solution for how to scale under workload variation,which may seriously hurt the overall system performance.To improve the scalability of the NFV platform and ensure consistent high performance under dynamic workloads,we propose AdaptNF,a novel NFV platform designed to support a combination of course-grained and fine-grained resource scheduling strategies.To deal with resource imbalance,which is the essential scheduling problem that leads to insufficient NFV performance,AdaptNF adopts a novel algorithm that can efficiently balance the workload among multiple network function instances through stateless flow migration.Our controlled experiments show that the AdaptNF scheme can optimize resource allocation and ensure outstanding performance after scaling.In terms of network throughput and latency,AdaptNF significantly improves the performance of the underlying NFV platform.
基金supported by NSFC under Grant No.62341102National Key R&D Program of China under Grant No.2018YFA0701604。
文摘Security service function chaining(SFC)based on software-defined networking(SDN)and network function virtualization(NFV)technology allows traffic to be forwarded sequentially among different security service functions to achieve a combination of security functions.Security SFC can be deployed according to requirements,but the current SFC is not flexible enough and lacks an effective feedback mechanism.The SFC is not traffic aware and the changes of traffic may cause the previously deployed security SFC to be invalid.How to establish a closed-loop mechanism to enhance the adaptive capability of the security SFC to malicious traffic has become an important issue.Our contribution is threefold.First,we propose a secure SFC path selection framework.The framework can accept the feedback results of traffic and security service functions in SFC,and dynamically select the opti-mal path for SFC based on the feedback results.It also realizes the automatic deployment of paths,forming a complete closed loop.Second,we expand the protocol of SFC to realize the security SFC with branching path,which improve flexibility of security SFC.Third,we propose a deep reinforcement learning-based dynamic path selection method for security SFC.It infers the optimal branching path by analyzing feedback from the security SFC.We have experimented with Distributed Denial of Service(DDoS)attack detection modules as security service functions.Experimental results show that our proposed method can dynamically select the optimal branching path for a security SFC based on traffic features and the state of the SFC.And it improves the accuracy of the overall malicious traffic detection of the security SFC and significantly reduces the latency and overall load of the SFC.
文摘为解决航空信息网络场景下业务突发、拓扑结构动态变化以及资源有限所带来的资源利用效率低下问题,针对服务功能链请求(Service Function Chain Requirement,SFCR)高效调度的难题,提出一种网络功能虚拟化的服务功能链调度算法。算法依据SFCR与平台的相关性进行映射,提高服务器处理效率并有效减少虚拟网络功能实例化数量及整合平台资源;综合考虑时延和流量影响对网络功能实例进行整合迁移,降低网络能耗同时提升网络资源利用率。仿真结果表明,在满足时延需求条件下,新方法在运行平台数量、SFCR接受率、网络资源消耗等方面具有较好的优化性能,适用于解决航空信息网络场景下的SFCR调度问题。