The 30 kW high-power electric servo system used in the solid booster of the Long March 6 A(LM-6 A)launch vehicle is introduced,and the function,composition of the system as well as its constituent equipments are detai...The 30 kW high-power electric servo system used in the solid booster of the Long March 6 A(LM-6 A)launch vehicle is introduced,and the function,composition of the system as well as its constituent equipments are detailed.To solve the problem of out-of-tolerance in the system dynamic characteristics,an advanced correction network algorithm architecture and double notch filter were designed.Experimental verification was conducted to prove that the dynamic characteristics requirement under multiple operating conditions could be met.展开更多
Since only one inverter voltage vector is applied during each duty cycle, traditional model predictive direct power control(MPDPC) for grid-connected inverters(GCIs) results in serious harmonics in current and power. ...Since only one inverter voltage vector is applied during each duty cycle, traditional model predictive direct power control(MPDPC) for grid-connected inverters(GCIs) results in serious harmonics in current and power. Moreover, a high sampling frequency is needed to ensure satisfactory steady-state performance, which is contradictory to its long execution time due to the iterative prediction calculations. To solve these problems, a novel dead-beat MPDPC strategy is proposed, using two active inverter voltage vectors and one zero inverter voltage vector during each duty cycle. Adoption of three inverter vectors ensures a constant switching frequency. Thus, smooth steady-state performance of both current and power can be obtained. Unlike the traditional three-vector based MPDPC strategy, the proposed three vectors are selected based on the power errors rather than the sector where the grid voltage vector is located, which ensures that the duration times of the selected vectors are positive all the time. Iterative calculations of the cost function in traditional predictive control are also removed, which makes the proposed strategy easy to implement on digital signal processors(DSPs) for industrial applications. Results of experiments based on a 1 kW inverter setup validate the feasibility of the proposed three-vector based dead-beat MPDPC strategy.展开更多
功率同步控制和矢量控制均是多端柔性直流输电系统(multi-terminal voltage source converter based high voltage direct current transmission,VSC-MTDC)中换流站的可选控制方式。与更加常用的矢量控制方式相比,功率同步控制方式的...功率同步控制和矢量控制均是多端柔性直流输电系统(multi-terminal voltage source converter based high voltage direct current transmission,VSC-MTDC)中换流站的可选控制方式。与更加常用的矢量控制方式相比,功率同步控制方式的原理与同步发电机类似,进而显现了相近的控制特性,更适用于与交流电网的弱连接,有利于交流电网的功角和频率稳定性,但其缺点是在直流侧故障下,换流站会出现较大的直流电压波动,恶化系统的动态特性。为了使换流站能够在不同的电网运行工况下匹配最合适的控制方式,提出一种可切换的控制策略,实现了在同一换流站中功率同步和矢量控制方式并存,并可依据需求实现无扰动自动切换。最后以PSCAD中搭建的三端交直流系统为例,演示和验证了同步切换控制策略的可行性。展开更多
恒频直接功率控制(constant switching frequency direct power control,CSF-DPC)具有开关频率固定、动态性能好、系统采样频率较低等优点。电网电压不平衡会在脉宽调制(pulse width modulation,PWM)型整流器交流侧产生大量谐波电流,使...恒频直接功率控制(constant switching frequency direct power control,CSF-DPC)具有开关频率固定、动态性能好、系统采样频率较低等优点。电网电压不平衡会在脉宽调制(pulse width modulation,PWM)型整流器交流侧产生大量谐波电流,使系统有功功率大幅波动,恶化系统性能。针对上述情况,提出一种新型恒频直接功率控制策略。该策略首先分离出电网电压和电流正、负序分量;然后在正、负序双旋转坐标系下计算瞬时功率与参考值之间的误差,根据误差生成整流器正、负序参考电压;合成后采用空间矢量调制(spacevector modulation,SVM)算法产生整流器电压,对功率进行补偿。该策略可有效抑制交流侧电流谐波,减小系统无功功率直流分量,稳定系统输出的有功功率,改善系统稳态性能。仿真与实验结果证明了该策略的正确性和有效性。展开更多
文摘The 30 kW high-power electric servo system used in the solid booster of the Long March 6 A(LM-6 A)launch vehicle is introduced,and the function,composition of the system as well as its constituent equipments are detailed.To solve the problem of out-of-tolerance in the system dynamic characteristics,an advanced correction network algorithm architecture and double notch filter were designed.Experimental verification was conducted to prove that the dynamic characteristics requirement under multiple operating conditions could be met.
基金supported by the National Natural Science Foundation of China(No.51622706)the Fundamental Research Funds for the Central Universities,China(No.2017XZZX002-17)
文摘Since only one inverter voltage vector is applied during each duty cycle, traditional model predictive direct power control(MPDPC) for grid-connected inverters(GCIs) results in serious harmonics in current and power. Moreover, a high sampling frequency is needed to ensure satisfactory steady-state performance, which is contradictory to its long execution time due to the iterative prediction calculations. To solve these problems, a novel dead-beat MPDPC strategy is proposed, using two active inverter voltage vectors and one zero inverter voltage vector during each duty cycle. Adoption of three inverter vectors ensures a constant switching frequency. Thus, smooth steady-state performance of both current and power can be obtained. Unlike the traditional three-vector based MPDPC strategy, the proposed three vectors are selected based on the power errors rather than the sector where the grid voltage vector is located, which ensures that the duration times of the selected vectors are positive all the time. Iterative calculations of the cost function in traditional predictive control are also removed, which makes the proposed strategy easy to implement on digital signal processors(DSPs) for industrial applications. Results of experiments based on a 1 kW inverter setup validate the feasibility of the proposed three-vector based dead-beat MPDPC strategy.
文摘根据三相电压型脉宽调制(pulse width modulation,PWM)整流器的瞬时功率数学模型,在矢量空间中分别研究每个开关矢量对瞬时功率的不同影响,给出相应的作用图,并由此将整个空间重新划分为18个非固定扇区,提出一种新的具有通用性的开关矢量表,在此过程中探究直接功率(direct power control,DPC)控制的调制机制。这种新的开关矢量表不仅可以克服传统开关表对无功功率控制上的缺陷,获得更好的稳态和动态控制效果,而且可以对其他开关表的不足进行一定的解释。文中通过不同开关表的控制系统对比仿真与实验,验证了各项结论的正确性和实用性。
文摘功率同步控制和矢量控制均是多端柔性直流输电系统(multi-terminal voltage source converter based high voltage direct current transmission,VSC-MTDC)中换流站的可选控制方式。与更加常用的矢量控制方式相比,功率同步控制方式的原理与同步发电机类似,进而显现了相近的控制特性,更适用于与交流电网的弱连接,有利于交流电网的功角和频率稳定性,但其缺点是在直流侧故障下,换流站会出现较大的直流电压波动,恶化系统的动态特性。为了使换流站能够在不同的电网运行工况下匹配最合适的控制方式,提出一种可切换的控制策略,实现了在同一换流站中功率同步和矢量控制方式并存,并可依据需求实现无扰动自动切换。最后以PSCAD中搭建的三端交直流系统为例,演示和验证了同步切换控制策略的可行性。
文摘恒频直接功率控制(constant switching frequency direct power control,CSF-DPC)具有开关频率固定、动态性能好、系统采样频率较低等优点。电网电压不平衡会在脉宽调制(pulse width modulation,PWM)型整流器交流侧产生大量谐波电流,使系统有功功率大幅波动,恶化系统性能。针对上述情况,提出一种新型恒频直接功率控制策略。该策略首先分离出电网电压和电流正、负序分量;然后在正、负序双旋转坐标系下计算瞬时功率与参考值之间的误差,根据误差生成整流器正、负序参考电压;合成后采用空间矢量调制(spacevector modulation,SVM)算法产生整流器电压,对功率进行补偿。该策略可有效抑制交流侧电流谐波,减小系统无功功率直流分量,稳定系统输出的有功功率,改善系统稳态性能。仿真与实验结果证明了该策略的正确性和有效性。